The Amplitude Density of a Truncated Fourier Series
A theoretical method is presented for finding the amplitude density of a periodic waveform expressed in terms of a truncated trigonometric Fourier series. If the waveform is approximated by n harmonics, the density depends on the roots of a polynomial of degree 2 n whose coefficients are simple func...
Gespeichert in:
Veröffentlicht in: | I.R.E. transactions on communications systems 1972-06, Vol.20 (3), p.483-485 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 3 |
container_start_page | 483 |
container_title | I.R.E. transactions on communications systems |
container_volume | 20 |
creator | Ludeman, L. |
description | A theoretical method is presented for finding the amplitude density of a periodic waveform expressed in terms of a truncated trigonometric Fourier series. If the waveform is approximated by n harmonics, the density depends on the roots of a polynomial of degree 2 n whose coefficients are simple functions of the Fourier series coefficients. |
doi_str_mv | 10.1109/TCOM.1972.1091161 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1091161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1091161</ieee_id><sourcerecordid>10_1109_TCOM_1972_1091161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-36fde1370bcb402a0e5b298efacd4adbf7ff14b502d9b76b2bafc19693e219eb3</originalsourceid><addsrcrecordid>eNpNj81OhDAUhRujiTj6AMZNXwC8twVKlxN01GTMLMQ1aeE2YmaGSQuLeXshzMLVycn5ST7GHhESRNDPVbn7TFArkUwOMccrFmGWFTEUmbpmEYCGOFequGV3IfwCQApSRkxWP8TXh9O-G8aW-AsdQzecee-44ZUfj40ZqOWbfvQdef5Fk4R7duPMPtDDRVfse_Nale_xdvf2Ua63cSPybIhl7lpCqcA2NgVhgDIrdEHONG1qWuuUc5jaDESrrcqtsMY1qHMtSaAmK1cMl9_G9yF4cvXJdwfjzzVCPVPXM3U9U9cX6mnztGw6IvrXX9I_Q_1TqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Amplitude Density of a Truncated Fourier Series</title><source>IEEE Electronic Library (IEL)</source><creator>Ludeman, L.</creator><creatorcontrib>Ludeman, L.</creatorcontrib><description>A theoretical method is presented for finding the amplitude density of a periodic waveform expressed in terms of a truncated trigonometric Fourier series. If the waveform is approximated by n harmonics, the density depends on the roots of a polynomial of degree 2 n whose coefficients are simple functions of the Fourier series coefficients.</description><identifier>ISSN: 0090-6778</identifier><identifier>ISSN: 0096-2244</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOM.1972.1091161</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distribution functions ; Electronic countermeasures ; Fourier series ; Polynomials ; Probability density function ; Random variables ; Signal analysis ; Signal resolution ; Tiles</subject><ispartof>I.R.E. transactions on communications systems, 1972-06, Vol.20 (3), p.483-485</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-36fde1370bcb402a0e5b298efacd4adbf7ff14b502d9b76b2bafc19693e219eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1091161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1091161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ludeman, L.</creatorcontrib><title>The Amplitude Density of a Truncated Fourier Series</title><title>I.R.E. transactions on communications systems</title><addtitle>TCOMM</addtitle><description>A theoretical method is presented for finding the amplitude density of a periodic waveform expressed in terms of a truncated trigonometric Fourier series. If the waveform is approximated by n harmonics, the density depends on the roots of a polynomial of degree 2 n whose coefficients are simple functions of the Fourier series coefficients.</description><subject>Distribution functions</subject><subject>Electronic countermeasures</subject><subject>Fourier series</subject><subject>Polynomials</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Signal analysis</subject><subject>Signal resolution</subject><subject>Tiles</subject><issn>0090-6778</issn><issn>0096-2244</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNpNj81OhDAUhRujiTj6AMZNXwC8twVKlxN01GTMLMQ1aeE2YmaGSQuLeXshzMLVycn5ST7GHhESRNDPVbn7TFArkUwOMccrFmGWFTEUmbpmEYCGOFequGV3IfwCQApSRkxWP8TXh9O-G8aW-AsdQzecee-44ZUfj40ZqOWbfvQdef5Fk4R7duPMPtDDRVfse_Nale_xdvf2Ua63cSPybIhl7lpCqcA2NgVhgDIrdEHONG1qWuuUc5jaDESrrcqtsMY1qHMtSaAmK1cMl9_G9yF4cvXJdwfjzzVCPVPXM3U9U9cX6mnztGw6IvrXX9I_Q_1TqQ</recordid><startdate>197206</startdate><enddate>197206</enddate><creator>Ludeman, L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197206</creationdate><title>The Amplitude Density of a Truncated Fourier Series</title><author>Ludeman, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-36fde1370bcb402a0e5b298efacd4adbf7ff14b502d9b76b2bafc19693e219eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>Distribution functions</topic><topic>Electronic countermeasures</topic><topic>Fourier series</topic><topic>Polynomials</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Signal analysis</topic><topic>Signal resolution</topic><topic>Tiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludeman, L.</creatorcontrib><collection>CrossRef</collection><jtitle>I.R.E. transactions on communications systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ludeman, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Amplitude Density of a Truncated Fourier Series</atitle><jtitle>I.R.E. transactions on communications systems</jtitle><stitle>TCOMM</stitle><date>1972-06</date><risdate>1972</risdate><volume>20</volume><issue>3</issue><spage>483</spage><epage>485</epage><pages>483-485</pages><issn>0090-6778</issn><issn>0096-2244</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>A theoretical method is presented for finding the amplitude density of a periodic waveform expressed in terms of a truncated trigonometric Fourier series. If the waveform is approximated by n harmonics, the density depends on the roots of a polynomial of degree 2 n whose coefficients are simple functions of the Fourier series coefficients.</abstract><pub>IEEE</pub><doi>10.1109/TCOM.1972.1091161</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | I.R.E. transactions on communications systems, 1972-06, Vol.20 (3), p.483-485 |
issn | 0090-6778 0096-2244 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_1091161 |
source | IEEE Electronic Library (IEL) |
subjects | Distribution functions Electronic countermeasures Fourier series Polynomials Probability density function Random variables Signal analysis Signal resolution Tiles |
title | The Amplitude Density of a Truncated Fourier Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Amplitude%20Density%20of%20a%20Truncated%20Fourier%20Series&rft.jtitle=I.R.E.%20transactions%20on%20communications%20systems&rft.au=Ludeman,%20L.&rft.date=1972-06&rft.volume=20&rft.issue=3&rft.spage=483&rft.epage=485&rft.pages=483-485&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOM.1972.1091161&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOM_1972_1091161%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1091161&rfr_iscdi=true |