Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities

To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems 1980-07, Vol.27 (7), p.642-644
Hauptverfasser: Boesch, F., Butler, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 7
container_start_page 642
container_title IEEE transactions on circuits and systems
container_volume 27
creator Boesch, F.
Butler, D.
description To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) > 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.
doi_str_mv 10.1109/TCS.1980.1084861
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1084861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1084861</ieee_id><sourcerecordid>10_1109_TCS_1980_1084861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-229bacb02b7dcfa5c4dc681687d9173faabd9633e361db27ac53a82d7d82a7663</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqVwR-LiF0ixncQ_R1SgIFXiQDlHjr2hRold2U4r3p5U7YHTanZ3RpoPoXtKFpQS9bhZfi6okpMispKcXqAZrWtZUCb4JZoRomRREVVdo5uUfgghUkk5Q-EZotvr7ILHocN5C3j0Luv4i41OcNwNzrthHPAw9tl9R73bJnxweYt3EZKJrgWL-3CAiNswepvwFNUHo3vcOw-FCd6DyW7vsoN0i6463Se4O885-np92SzfivXH6n35tC4Mo1UuGFOtNi1hrbCm07WprOGScimsoqLstG6t4mUJJae2ZUKbutSSWWEl04Lzco7IKdfEkFKErtlFN0y1GkqaI7BmAtYcgTVnYJPl4WRxAPDv_XT9A9p0al8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</title><source>IEEE Electronic Library (IEL)</source><creator>Boesch, F. ; Butler, D.</creator><creatorcontrib>Boesch, F. ; Butler, D.</creatorcontrib><description>To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) &gt; 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.</description><identifier>ISSN: 0098-4094</identifier><identifier>EISSN: 1558-1276</identifier><identifier>DOI: 10.1109/TCS.1980.1084861</identifier><identifier>CODEN: ICSYBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Butler matrix ; Circuits and systems ; Communication networks ; Reliability theory ; Symmetric matrices ; Telecommunication network reliability ; Telephony ; Terminology ; Tree graphs</subject><ispartof>IEEE transactions on circuits and systems, 1980-07, Vol.27 (7), p.642-644</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-229bacb02b7dcfa5c4dc681687d9173faabd9633e361db27ac53a82d7d82a7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1084861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1084861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boesch, F.</creatorcontrib><creatorcontrib>Butler, D.</creatorcontrib><title>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</title><title>IEEE transactions on circuits and systems</title><addtitle>T-CAS</addtitle><description>To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) &gt; 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.</description><subject>Butler matrix</subject><subject>Circuits and systems</subject><subject>Communication networks</subject><subject>Reliability theory</subject><subject>Symmetric matrices</subject><subject>Telecommunication network reliability</subject><subject>Telephony</subject><subject>Terminology</subject><subject>Tree graphs</subject><issn>0098-4094</issn><issn>1558-1276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqVwR-LiF0ixncQ_R1SgIFXiQDlHjr2hRold2U4r3p5U7YHTanZ3RpoPoXtKFpQS9bhZfi6okpMispKcXqAZrWtZUCb4JZoRomRREVVdo5uUfgghUkk5Q-EZotvr7ILHocN5C3j0Luv4i41OcNwNzrthHPAw9tl9R73bJnxweYt3EZKJrgWL-3CAiNswepvwFNUHo3vcOw-FCd6DyW7vsoN0i6463Se4O885-np92SzfivXH6n35tC4Mo1UuGFOtNi1hrbCm07WprOGScimsoqLstG6t4mUJJae2ZUKbutSSWWEl04Lzco7IKdfEkFKErtlFN0y1GkqaI7BmAtYcgTVnYJPl4WRxAPDv_XT9A9p0al8</recordid><startdate>198007</startdate><enddate>198007</enddate><creator>Boesch, F.</creator><creator>Butler, D.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198007</creationdate><title>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</title><author>Boesch, F. ; Butler, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-229bacb02b7dcfa5c4dc681687d9173faabd9633e361db27ac53a82d7d82a7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Butler matrix</topic><topic>Circuits and systems</topic><topic>Communication networks</topic><topic>Reliability theory</topic><topic>Symmetric matrices</topic><topic>Telecommunication network reliability</topic><topic>Telephony</topic><topic>Terminology</topic><topic>Tree graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Boesch, F.</creatorcontrib><creatorcontrib>Butler, D.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boesch, F.</au><au>Butler, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</atitle><jtitle>IEEE transactions on circuits and systems</jtitle><stitle>T-CAS</stitle><date>1980-07</date><risdate>1980</risdate><volume>27</volume><issue>7</issue><spage>642</spage><epage>644</epage><pages>642-644</pages><issn>0098-4094</issn><eissn>1558-1276</eissn><coden>ICSYBT</coden><abstract>To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) &gt; 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.</abstract><pub>IEEE</pub><doi>10.1109/TCS.1980.1084861</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-4094
ispartof IEEE transactions on circuits and systems, 1980-07, Vol.27 (7), p.642-644
issn 0098-4094
1558-1276
language eng
recordid cdi_ieee_primary_1084861
source IEEE Electronic Library (IEL)
subjects Butler matrix
Circuits and systems
Communication networks
Reliability theory
Symmetric matrices
Telecommunication network reliability
Telephony
Terminology
Tree graphs
title Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20unitary%20case%20of%20minimum%20multigraphs%20with%20prescribed%20lower%20bounds%20on%20local%20line-connectivities&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems&rft.au=Boesch,%20F.&rft.date=1980-07&rft.volume=27&rft.issue=7&rft.spage=642&rft.epage=644&rft.pages=642-644&rft.issn=0098-4094&rft.eissn=1558-1276&rft.coden=ICSYBT&rft_id=info:doi/10.1109/TCS.1980.1084861&rft_dat=%3Ccrossref_RIE%3E10_1109_TCS_1980_1084861%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1084861&rfr_iscdi=true