Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities
To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliab...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems 1980-07, Vol.27 (7), p.642-644 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 644 |
---|---|
container_issue | 7 |
container_start_page | 642 |
container_title | IEEE transactions on circuits and systems |
container_volume | 27 |
creator | Boesch, F. Butler, D. |
description | To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) > 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case. |
doi_str_mv | 10.1109/TCS.1980.1084861 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1084861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1084861</ieee_id><sourcerecordid>10_1109_TCS_1980_1084861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-229bacb02b7dcfa5c4dc681687d9173faabd9633e361db27ac53a82d7d82a7663</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqVwR-LiF0ixncQ_R1SgIFXiQDlHjr2hRold2U4r3p5U7YHTanZ3RpoPoXtKFpQS9bhZfi6okpMispKcXqAZrWtZUCb4JZoRomRREVVdo5uUfgghUkk5Q-EZotvr7ILHocN5C3j0Luv4i41OcNwNzrthHPAw9tl9R73bJnxweYt3EZKJrgWL-3CAiNswepvwFNUHo3vcOw-FCd6DyW7vsoN0i6463Se4O885-np92SzfivXH6n35tC4Mo1UuGFOtNi1hrbCm07WprOGScimsoqLstG6t4mUJJae2ZUKbutSSWWEl04Lzco7IKdfEkFKErtlFN0y1GkqaI7BmAtYcgTVnYJPl4WRxAPDv_XT9A9p0al8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</title><source>IEEE Electronic Library (IEL)</source><creator>Boesch, F. ; Butler, D.</creator><creatorcontrib>Boesch, F. ; Butler, D.</creatorcontrib><description>To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) > 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.</description><identifier>ISSN: 0098-4094</identifier><identifier>EISSN: 1558-1276</identifier><identifier>DOI: 10.1109/TCS.1980.1084861</identifier><identifier>CODEN: ICSYBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Butler matrix ; Circuits and systems ; Communication networks ; Reliability theory ; Symmetric matrices ; Telecommunication network reliability ; Telephony ; Terminology ; Tree graphs</subject><ispartof>IEEE transactions on circuits and systems, 1980-07, Vol.27 (7), p.642-644</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-229bacb02b7dcfa5c4dc681687d9173faabd9633e361db27ac53a82d7d82a7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1084861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1084861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boesch, F.</creatorcontrib><creatorcontrib>Butler, D.</creatorcontrib><title>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</title><title>IEEE transactions on circuits and systems</title><addtitle>T-CAS</addtitle><description>To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) > 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.</description><subject>Butler matrix</subject><subject>Circuits and systems</subject><subject>Communication networks</subject><subject>Reliability theory</subject><subject>Symmetric matrices</subject><subject>Telecommunication network reliability</subject><subject>Telephony</subject><subject>Terminology</subject><subject>Tree graphs</subject><issn>0098-4094</issn><issn>1558-1276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqVwR-LiF0ixncQ_R1SgIFXiQDlHjr2hRold2U4r3p5U7YHTanZ3RpoPoXtKFpQS9bhZfi6okpMispKcXqAZrWtZUCb4JZoRomRREVVdo5uUfgghUkk5Q-EZotvr7ILHocN5C3j0Luv4i41OcNwNzrthHPAw9tl9R73bJnxweYt3EZKJrgWL-3CAiNswepvwFNUHo3vcOw-FCd6DyW7vsoN0i6463Se4O885-np92SzfivXH6n35tC4Mo1UuGFOtNi1hrbCm07WprOGScimsoqLstG6t4mUJJae2ZUKbutSSWWEl04Lzco7IKdfEkFKErtlFN0y1GkqaI7BmAtYcgTVnYJPl4WRxAPDv_XT9A9p0al8</recordid><startdate>198007</startdate><enddate>198007</enddate><creator>Boesch, F.</creator><creator>Butler, D.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198007</creationdate><title>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</title><author>Boesch, F. ; Butler, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-229bacb02b7dcfa5c4dc681687d9173faabd9633e361db27ac53a82d7d82a7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Butler matrix</topic><topic>Circuits and systems</topic><topic>Communication networks</topic><topic>Reliability theory</topic><topic>Symmetric matrices</topic><topic>Telecommunication network reliability</topic><topic>Telephony</topic><topic>Terminology</topic><topic>Tree graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Boesch, F.</creatorcontrib><creatorcontrib>Butler, D.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boesch, F.</au><au>Butler, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities</atitle><jtitle>IEEE transactions on circuits and systems</jtitle><stitle>T-CAS</stitle><date>1980-07</date><risdate>1980</risdate><volume>27</volume><issue>7</issue><spage>642</spage><epage>644</epage><pages>642-644</pages><issn>0098-4094</issn><eissn>1558-1276</eissn><coden>ICSYBT</coden><abstract>To allow for alternate routes in the event of a line failure, a reliable communication network must provide for more than one path between certain pairs of points. We consider here the case where the network is modeled by a multigraph, and path requirements are stated generally by a symmetric reliability matrix R , where r(i,j) is equal to the specified lower bound on the number of line-disjoint paths required between points v_i and v_j , in the multigraph. In a recent paper [1] a new, simple algorithm was derived for constructing minimum size multigraphs which satisfy path requirements specified in a reliability matrix where r(i,j) > 1 . The result for the general case where some r(i,j) \leq 1 was merely stated. In many communication networks, the number of required paths between certain pairs of points may be very low, i.e., r(i, j) \leq 1 . In this paper we derive the complete algorithm and proof for this important case.</abstract><pub>IEEE</pub><doi>10.1109/TCS.1980.1084861</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-4094 |
ispartof | IEEE transactions on circuits and systems, 1980-07, Vol.27 (7), p.642-644 |
issn | 0098-4094 1558-1276 |
language | eng |
recordid | cdi_ieee_primary_1084861 |
source | IEEE Electronic Library (IEL) |
subjects | Butler matrix Circuits and systems Communication networks Reliability theory Symmetric matrices Telecommunication network reliability Telephony Terminology Tree graphs |
title | Derivation of the unitary case of minimum multigraphs with prescribed lower bounds on local line-connectivities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20unitary%20case%20of%20minimum%20multigraphs%20with%20prescribed%20lower%20bounds%20on%20local%20line-connectivities&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems&rft.au=Boesch,%20F.&rft.date=1980-07&rft.volume=27&rft.issue=7&rft.spage=642&rft.epage=644&rft.pages=642-644&rft.issn=0098-4094&rft.eissn=1558-1276&rft.coden=ICSYBT&rft_id=info:doi/10.1109/TCS.1980.1084861&rft_dat=%3Ccrossref_RIE%3E10_1109_TCS_1980_1084861%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1084861&rfr_iscdi=true |