Image Quality Assessments By Leveraging Diverse Visual Tasks

Image quality assessment (IQA) is a fundamental task in computer vision with the goal of accurately predicting the mean opinion score of humans for assessing the quality of images. While recent advances in deep neural networks (DNNs) have sparked much research on IQA, with the hope for IQA to mimic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025-01, Vol.13, p.1-1
Hauptverfasser: Lee, Joonhee, Park, Dongwon, Chun, Se Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 13
creator Lee, Joonhee
Park, Dongwon
Chun, Se Young
description Image quality assessment (IQA) is a fundamental task in computer vision with the goal of accurately predicting the mean opinion score of humans for assessing the quality of images. While recent advances in deep neural networks (DNNs) have sparked much research on IQA, with the hope for IQA to mimic humans effectively, there has been a lack of systematic and analytical research on understanding what factors humans prioritize during IQA. This paper aims to identify human priorities in image evaluation by leveraging the DNN models for diverse computer vision tasks and proposes simple, but effective IQA metrics through our comprehensive analyses on those models. Then, these analyses led us to propose a novel vision-ensemble IQA (VE-IQA) method that demonstrated superior performance as compared to prior arts in IQA on popular IQA benchmarks such as LIVE, CSIQ, and TID2013.
doi_str_mv 10.1109/ACCESS.2025.3531500
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10845170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10845170</ieee_id><doaj_id>oai_doaj_org_article_e899e5e7a7ba4cb5be753cf5f5cea9d6</doaj_id><sourcerecordid>3161370945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2040-e966ce69056cc47defbcf5c02fc26525119c83b35b4fbcc8d17021d283d75c0d3</originalsourceid><addsrcrecordid>eNpNUFtLwzAUDqLg0P0CfSj43JlLkzTgy6xTBwORTV9Dmp6WzG2dSSfs35vZIcvLOTn5LjkfQjcEjwjB6n5cFJP5fEQx5SPGGeEYn6EBJUKl8SrOT_pLNAxhiePJ44jLAXqYrk0DyfvOrFy3T8YhQAhr2HQhedwnM_gBbxq3aZInF9sAyacLEZssTPgK1-iiNqsAw2O9Qh_Pk0Xxms7eXqbFeJZaijOcghLCglCYC2szWUFd2ppbTGtLBaecEGVzVjJeZvHF5hWRmJKK5qySEVaxKzTtdavWLPXWu7Xxe90ap_8GrW-08Z2zK9CQKwUcpJGlyWzJS5CcRbfoB0ZVImrd9Vpb337vIHR62e78Jn5fMyIIk1hlPKJYj7K-DcFD_e9KsD6krvvU9SF1fUw9sm57lgOAE0ae8bgS-wVGvn1m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3161370945</pqid></control><display><type>article</type><title>Image Quality Assessments By Leveraging Diverse Visual Tasks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Joonhee ; Park, Dongwon ; Chun, Se Young</creator><creatorcontrib>Lee, Joonhee ; Park, Dongwon ; Chun, Se Young</creatorcontrib><description>Image quality assessment (IQA) is a fundamental task in computer vision with the goal of accurately predicting the mean opinion score of humans for assessing the quality of images. While recent advances in deep neural networks (DNNs) have sparked much research on IQA, with the hope for IQA to mimic humans effectively, there has been a lack of systematic and analytical research on understanding what factors humans prioritize during IQA. This paper aims to identify human priorities in image evaluation by leveraging the DNN models for diverse computer vision tasks and proposes simple, but effective IQA metrics through our comprehensive analyses on those models. Then, these analyses led us to propose a novel vision-ensemble IQA (VE-IQA) method that demonstrated superior performance as compared to prior arts in IQA on popular IQA benchmarks such as LIVE, CSIQ, and TID2013.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3531500</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Computer vision ; Correlation ; diverse visual tasks ; Feature extraction ; Fitting ; Image edge detection ; Image quality ; Image quality assessment ; Measurement ; Quality assessment ; Scene classification ; Training ; Transfer learning ; vision-ensemble ; Visual tasks ; Visualization</subject><ispartof>IEEE access, 2025-01, Vol.13, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2040-e966ce69056cc47defbcf5c02fc26525119c83b35b4fbcc8d17021d283d75c0d3</cites><orcidid>0000-0001-8739-8960 ; 0009-0003-6056-4967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10845170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lee, Joonhee</creatorcontrib><creatorcontrib>Park, Dongwon</creatorcontrib><creatorcontrib>Chun, Se Young</creatorcontrib><title>Image Quality Assessments By Leveraging Diverse Visual Tasks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Image quality assessment (IQA) is a fundamental task in computer vision with the goal of accurately predicting the mean opinion score of humans for assessing the quality of images. While recent advances in deep neural networks (DNNs) have sparked much research on IQA, with the hope for IQA to mimic humans effectively, there has been a lack of systematic and analytical research on understanding what factors humans prioritize during IQA. This paper aims to identify human priorities in image evaluation by leveraging the DNN models for diverse computer vision tasks and proposes simple, but effective IQA metrics through our comprehensive analyses on those models. Then, these analyses led us to propose a novel vision-ensemble IQA (VE-IQA) method that demonstrated superior performance as compared to prior arts in IQA on popular IQA benchmarks such as LIVE, CSIQ, and TID2013.</description><subject>Artificial neural networks</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>diverse visual tasks</subject><subject>Feature extraction</subject><subject>Fitting</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image quality assessment</subject><subject>Measurement</subject><subject>Quality assessment</subject><subject>Scene classification</subject><subject>Training</subject><subject>Transfer learning</subject><subject>vision-ensemble</subject><subject>Visual tasks</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUFtLwzAUDqLg0P0CfSj43JlLkzTgy6xTBwORTV9Dmp6WzG2dSSfs35vZIcvLOTn5LjkfQjcEjwjB6n5cFJP5fEQx5SPGGeEYn6EBJUKl8SrOT_pLNAxhiePJ44jLAXqYrk0DyfvOrFy3T8YhQAhr2HQhedwnM_gBbxq3aZInF9sAyacLEZssTPgK1-iiNqsAw2O9Qh_Pk0Xxms7eXqbFeJZaijOcghLCglCYC2szWUFd2ppbTGtLBaecEGVzVjJeZvHF5hWRmJKK5qySEVaxKzTtdavWLPXWu7Xxe90ap_8GrW-08Z2zK9CQKwUcpJGlyWzJS5CcRbfoB0ZVImrd9Vpb337vIHR62e78Jn5fMyIIk1hlPKJYj7K-DcFD_e9KsD6krvvU9SF1fUw9sm57lgOAE0ae8bgS-wVGvn1m</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Lee, Joonhee</creator><creator>Park, Dongwon</creator><creator>Chun, Se Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8739-8960</orcidid><orcidid>https://orcid.org/0009-0003-6056-4967</orcidid></search><sort><creationdate>20250101</creationdate><title>Image Quality Assessments By Leveraging Diverse Visual Tasks</title><author>Lee, Joonhee ; Park, Dongwon ; Chun, Se Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2040-e966ce69056cc47defbcf5c02fc26525119c83b35b4fbcc8d17021d283d75c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial neural networks</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>diverse visual tasks</topic><topic>Feature extraction</topic><topic>Fitting</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image quality assessment</topic><topic>Measurement</topic><topic>Quality assessment</topic><topic>Scene classification</topic><topic>Training</topic><topic>Transfer learning</topic><topic>vision-ensemble</topic><topic>Visual tasks</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joonhee</creatorcontrib><creatorcontrib>Park, Dongwon</creatorcontrib><creatorcontrib>Chun, Se Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joonhee</au><au>Park, Dongwon</au><au>Chun, Se Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Quality Assessments By Leveraging Diverse Visual Tasks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Image quality assessment (IQA) is a fundamental task in computer vision with the goal of accurately predicting the mean opinion score of humans for assessing the quality of images. While recent advances in deep neural networks (DNNs) have sparked much research on IQA, with the hope for IQA to mimic humans effectively, there has been a lack of systematic and analytical research on understanding what factors humans prioritize during IQA. This paper aims to identify human priorities in image evaluation by leveraging the DNN models for diverse computer vision tasks and proposes simple, but effective IQA metrics through our comprehensive analyses on those models. Then, these analyses led us to propose a novel vision-ensemble IQA (VE-IQA) method that demonstrated superior performance as compared to prior arts in IQA on popular IQA benchmarks such as LIVE, CSIQ, and TID2013.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3531500</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8739-8960</orcidid><orcidid>https://orcid.org/0009-0003-6056-4967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025-01, Vol.13, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10845170
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Computer vision
Correlation
diverse visual tasks
Feature extraction
Fitting
Image edge detection
Image quality
Image quality assessment
Measurement
Quality assessment
Scene classification
Training
Transfer learning
vision-ensemble
Visual tasks
Visualization
title Image Quality Assessments By Leveraging Diverse Visual Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Quality%20Assessments%20By%20Leveraging%20Diverse%20Visual%20Tasks&rft.jtitle=IEEE%20access&rft.au=Lee,%20Joonhee&rft.date=2025-01-01&rft.volume=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3531500&rft_dat=%3Cproquest_ieee_%3E3161370945%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3161370945&rft_id=info:pmid/&rft_ieee_id=10845170&rft_doaj_id=oai_doaj_org_article_e899e5e7a7ba4cb5be753cf5f5cea9d6&rfr_iscdi=true