Finite Element Analysis and Multi-Objective Optimization of Solder Joint Temperature Difference and Cooling Stress During PCBA Reflow Process

A finite element analysis model of a printed circuit board assembly (PCBA) was established. The model was subjected to a reflow soldering temperature profile to analyze the temperature distribution at the solder joint solidification moment and the cooling stress distribution at the end of the reflow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2025-01, p.1-1
Hauptverfasser: Lan, Jingyi, Huang, Chunyue, Liang, Ying, Gao, Chao, Wang, Gui, Cao, Zhiqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume
creator Lan, Jingyi
Huang, Chunyue
Liang, Ying
Gao, Chao
Wang, Gui
Cao, Zhiqin
description A finite element analysis model of a printed circuit board assembly (PCBA) was established. The model was subjected to a reflow soldering temperature profile to analyze the temperature distribution at the solder joint solidification moment and the cooling stress distribution at the end of the reflow soldering process. Validation experiments confirmed the accuracy of the simulation results. The response surface methodology combined with the NSGA-II algorithm was employed to optimize the reflow soldering process parameters with the dual objectives of minimizing solder joint temperature difference and cooling stress. The results reveal uneven temperature distribution at the solder joint solidification onset and concentrated cooling stress due to the mismatch in thermal expansion coefficients. The optimized reflow soldering process parameters were determined as: soak time of 80 s, reflow time of 35 s, reflow temperature of 230°C, and cooling rate of 2°C/s. Simulation validation demonstrated that with the optimal reflow soldering process parameters, the solder joint temperature difference and cooling stress were reduced by 1.058°C and 1.245MPa, respectively. The results of this study on the optimization of the reflow soldering process parameters of the PCBA has a certain degree of significance in guiding.
doi_str_mv 10.1109/TCPMT.2025.3529292
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10841402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10841402</ieee_id><sourcerecordid>10_1109_TCPMT_2025_3529292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642-37fe16d63c11ad2f41f510dea069c3938412c04d99b83c57385dd5db859021a43</originalsourceid><addsrcrecordid>eNpNkNtqwzAMQMPYYKXrD4w9-AfS-RKn8WOXtrvQ0rLmPbi2PFySuNjpRvcP--elF8akB0mII8GJonuCh4Rg8Vjkq0UxpJjyIeNUdHkV9SjhacxExq__eo5vo0EIW9wFz_AIs170M7ONbQFNK6ihadG4kdUh2IBko9FiX7U2Xm62oFr7CWi5a21tv2VrXYOcQWtXafDozdmOLKDegZft3gOaWGPAQ6PgdCd3rrLNB1q3HkJAk70_Tqv8aYzewVTuC628U93qLroxsgowuNR-VMymRf4Sz5fPr_l4Hqs0oTEbGSCpTpkiRGpqEmI4wRokToVigmUJoQonWohNxhQfsYxrzfUm4wJTIhPWj-j5rPIuBA-m3HlbS38oCS6PSsuT0vKotLwo7aCHM2QB4B_QfUswZb9-dXQt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite Element Analysis and Multi-Objective Optimization of Solder Joint Temperature Difference and Cooling Stress During PCBA Reflow Process</title><source>IEEE Electronic Library (IEL)</source><creator>Lan, Jingyi ; Huang, Chunyue ; Liang, Ying ; Gao, Chao ; Wang, Gui ; Cao, Zhiqin</creator><creatorcontrib>Lan, Jingyi ; Huang, Chunyue ; Liang, Ying ; Gao, Chao ; Wang, Gui ; Cao, Zhiqin</creatorcontrib><description>A finite element analysis model of a printed circuit board assembly (PCBA) was established. The model was subjected to a reflow soldering temperature profile to analyze the temperature distribution at the solder joint solidification moment and the cooling stress distribution at the end of the reflow soldering process. Validation experiments confirmed the accuracy of the simulation results. The response surface methodology combined with the NSGA-II algorithm was employed to optimize the reflow soldering process parameters with the dual objectives of minimizing solder joint temperature difference and cooling stress. The results reveal uneven temperature distribution at the solder joint solidification onset and concentrated cooling stress due to the mismatch in thermal expansion coefficients. The optimized reflow soldering process parameters were determined as: soak time of 80 s, reflow time of 35 s, reflow temperature of 230°C, and cooling rate of 2°C/s. Simulation validation demonstrated that with the optimal reflow soldering process parameters, the solder joint temperature difference and cooling stress were reduced by 1.058°C and 1.245MPa, respectively. The results of this study on the optimization of the reflow soldering process parameters of the PCBA has a certain degree of significance in guiding.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2025.3529292</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cooling ; Finite element analysis ; Integrated circuit modeling ; Lead ; multi-objective optimization ; Packaging ; PCBA solder joints ; Reflow soldering ; Semiconductor device modeling ; Stress ; temperature difference and cooling stress ; Temperature distribution ; Thermal conductivity</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1301-3711 ; 0009-0006-3636-2021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10841402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10841402$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lan, Jingyi</creatorcontrib><creatorcontrib>Huang, Chunyue</creatorcontrib><creatorcontrib>Liang, Ying</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Wang, Gui</creatorcontrib><creatorcontrib>Cao, Zhiqin</creatorcontrib><title>Finite Element Analysis and Multi-Objective Optimization of Solder Joint Temperature Difference and Cooling Stress During PCBA Reflow Process</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>A finite element analysis model of a printed circuit board assembly (PCBA) was established. The model was subjected to a reflow soldering temperature profile to analyze the temperature distribution at the solder joint solidification moment and the cooling stress distribution at the end of the reflow soldering process. Validation experiments confirmed the accuracy of the simulation results. The response surface methodology combined with the NSGA-II algorithm was employed to optimize the reflow soldering process parameters with the dual objectives of minimizing solder joint temperature difference and cooling stress. The results reveal uneven temperature distribution at the solder joint solidification onset and concentrated cooling stress due to the mismatch in thermal expansion coefficients. The optimized reflow soldering process parameters were determined as: soak time of 80 s, reflow time of 35 s, reflow temperature of 230°C, and cooling rate of 2°C/s. Simulation validation demonstrated that with the optimal reflow soldering process parameters, the solder joint temperature difference and cooling stress were reduced by 1.058°C and 1.245MPa, respectively. The results of this study on the optimization of the reflow soldering process parameters of the PCBA has a certain degree of significance in guiding.</description><subject>Cooling</subject><subject>Finite element analysis</subject><subject>Integrated circuit modeling</subject><subject>Lead</subject><subject>multi-objective optimization</subject><subject>Packaging</subject><subject>PCBA solder joints</subject><subject>Reflow soldering</subject><subject>Semiconductor device modeling</subject><subject>Stress</subject><subject>temperature difference and cooling stress</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtqwzAMQMPYYKXrD4w9-AfS-RKn8WOXtrvQ0rLmPbi2PFySuNjpRvcP--elF8akB0mII8GJonuCh4Rg8Vjkq0UxpJjyIeNUdHkV9SjhacxExq__eo5vo0EIW9wFz_AIs170M7ONbQFNK6ihadG4kdUh2IBko9FiX7U2Xm62oFr7CWi5a21tv2VrXYOcQWtXafDozdmOLKDegZft3gOaWGPAQ6PgdCd3rrLNB1q3HkJAk70_Tqv8aYzewVTuC628U93qLroxsgowuNR-VMymRf4Sz5fPr_l4Hqs0oTEbGSCpTpkiRGpqEmI4wRokToVigmUJoQonWohNxhQfsYxrzfUm4wJTIhPWj-j5rPIuBA-m3HlbS38oCS6PSsuT0vKotLwo7aCHM2QB4B_QfUswZb9-dXQt</recordid><startdate>20250113</startdate><enddate>20250113</enddate><creator>Lan, Jingyi</creator><creator>Huang, Chunyue</creator><creator>Liang, Ying</creator><creator>Gao, Chao</creator><creator>Wang, Gui</creator><creator>Cao, Zhiqin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1301-3711</orcidid><orcidid>https://orcid.org/0009-0006-3636-2021</orcidid></search><sort><creationdate>20250113</creationdate><title>Finite Element Analysis and Multi-Objective Optimization of Solder Joint Temperature Difference and Cooling Stress During PCBA Reflow Process</title><author>Lan, Jingyi ; Huang, Chunyue ; Liang, Ying ; Gao, Chao ; Wang, Gui ; Cao, Zhiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642-37fe16d63c11ad2f41f510dea069c3938412c04d99b83c57385dd5db859021a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cooling</topic><topic>Finite element analysis</topic><topic>Integrated circuit modeling</topic><topic>Lead</topic><topic>multi-objective optimization</topic><topic>Packaging</topic><topic>PCBA solder joints</topic><topic>Reflow soldering</topic><topic>Semiconductor device modeling</topic><topic>Stress</topic><topic>temperature difference and cooling stress</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Jingyi</creatorcontrib><creatorcontrib>Huang, Chunyue</creatorcontrib><creatorcontrib>Liang, Ying</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Wang, Gui</creatorcontrib><creatorcontrib>Cao, Zhiqin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lan, Jingyi</au><au>Huang, Chunyue</au><au>Liang, Ying</au><au>Gao, Chao</au><au>Wang, Gui</au><au>Cao, Zhiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Analysis and Multi-Objective Optimization of Solder Joint Temperature Difference and Cooling Stress During PCBA Reflow Process</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2025-01-13</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>A finite element analysis model of a printed circuit board assembly (PCBA) was established. The model was subjected to a reflow soldering temperature profile to analyze the temperature distribution at the solder joint solidification moment and the cooling stress distribution at the end of the reflow soldering process. Validation experiments confirmed the accuracy of the simulation results. The response surface methodology combined with the NSGA-II algorithm was employed to optimize the reflow soldering process parameters with the dual objectives of minimizing solder joint temperature difference and cooling stress. The results reveal uneven temperature distribution at the solder joint solidification onset and concentrated cooling stress due to the mismatch in thermal expansion coefficients. The optimized reflow soldering process parameters were determined as: soak time of 80 s, reflow time of 35 s, reflow temperature of 230°C, and cooling rate of 2°C/s. Simulation validation demonstrated that with the optimal reflow soldering process parameters, the solder joint temperature difference and cooling stress were reduced by 1.058°C and 1.245MPa, respectively. The results of this study on the optimization of the reflow soldering process parameters of the PCBA has a certain degree of significance in guiding.</abstract><pub>IEEE</pub><doi>10.1109/TCPMT.2025.3529292</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1301-3711</orcidid><orcidid>https://orcid.org/0009-0006-3636-2021</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2025-01, p.1-1
issn 2156-3950
2156-3985
language eng
recordid cdi_ieee_primary_10841402
source IEEE Electronic Library (IEL)
subjects Cooling
Finite element analysis
Integrated circuit modeling
Lead
multi-objective optimization
Packaging
PCBA solder joints
Reflow soldering
Semiconductor device modeling
Stress
temperature difference and cooling stress
Temperature distribution
Thermal conductivity
title Finite Element Analysis and Multi-Objective Optimization of Solder Joint Temperature Difference and Cooling Stress During PCBA Reflow Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Analysis%20and%20Multi-Objective%20Optimization%20of%20Solder%20Joint%20Temperature%20Difference%20and%20Cooling%20Stress%20During%20PCBA%20Reflow%20Process&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Lan,%20Jingyi&rft.date=2025-01-13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2025.3529292&rft_dat=%3Ccrossref_RIE%3E10_1109_TCPMT_2025_3529292%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10841402&rfr_iscdi=true