Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning

As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational imaging 2025-01, Vol.11, p.1-13
Hauptverfasser: Dong, Yanchen, Xiong, Ruiqin, Fan, Xiaopeng, Zhu, Shuyuan, Wang, Jin, Huang, Tiejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on computational imaging
container_volume 11
creator Dong, Yanchen
Xiong, Ruiqin
Fan, Xiaopeng
Zhu, Shuyuan
Wang, Jin
Huang, Tiejun
description As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .
doi_str_mv 10.1109/TCI.2025.3527156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10836923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10836923</ieee_id><sourcerecordid>3161371160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c900-ce81781160f9534bfefc4b99fd7691bf4dba4a84caec636c56a30ea11db650f23</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EElXpzsBgiTnlnHOceEThqygSEu3EYjnuGVLauDgpUv89qdqB5e6G531Pehi7FjAVAvTdopxNU0izKWZpLjJ1xkYpIiZaAp4Pd5ZjAhLVJZt03QoAhNQpFmrEXh_2rd00js8dtcTfyYW26-PO9U1ouQ-Rl2E9zPm2-SZe2g1Fy38byz8ohmT-FXpekY1t035esQtv1x1NTnvMFk-Pi_Ilqd6eZ-V9lTgNkDgqRF4IocDrDGXtyTtZa-2XudKi9nJZW2kL6Sw5hcplyiKQFWJZqwx8imN2e6zdxvCzo643q7CL7fDRoFAC80P3QMGRcjF0XSRvtrHZ2Lg3AszBmRmcmYMzc3I2RG6OkYaI_uEFqkEW_gHz4WcF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3161371160</pqid></control><display><type>article</type><title>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Yanchen ; Xiong, Ruiqin ; Fan, Xiaopeng ; Zhu, Shuyuan ; Wang, Jin ; Huang, Tiejun</creator><creatorcontrib>Dong, Yanchen ; Xiong, Ruiqin ; Fan, Xiaopeng ; Zhu, Shuyuan ; Wang, Jin ; Huang, Tiejun</creatorcontrib><description>As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2025.3527156</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayer pattern ; Cameras ; Color ; color filter array ; Color imagery ; color imaging ; demosaicing ; high-speed imaging ; Image color analysis ; Image quality ; Image reconstruction ; Image resolution ; Image restoration ; Pixels ; Sensor arrays ; Spike camera ; Streaming media ; Synthetic data ; Temporal resolution ; Training ; Visualization ; Zero shot learning</subject><ispartof>IEEE transactions on computational imaging, 2025-01, Vol.11, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c900-ce81781160f9534bfefc4b99fd7691bf4dba4a84caec636c56a30ea11db650f23</cites><orcidid>0000-0002-9660-3636 ; 0000-0001-9796-0478 ; 0000-0001-8011-7193 ; 0000-0002-4234-6099 ; 0000-0001-5437-3150 ; 0000-0003-4450-3868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10836923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10836923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Yanchen</creatorcontrib><creatorcontrib>Xiong, Ruiqin</creatorcontrib><creatorcontrib>Fan, Xiaopeng</creatorcontrib><creatorcontrib>Zhu, Shuyuan</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><title>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .</description><subject>Bayer pattern</subject><subject>Cameras</subject><subject>Color</subject><subject>color filter array</subject><subject>Color imagery</subject><subject>color imaging</subject><subject>demosaicing</subject><subject>high-speed imaging</subject><subject>Image color analysis</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image restoration</subject><subject>Pixels</subject><subject>Sensor arrays</subject><subject>Spike camera</subject><subject>Streaming media</subject><subject>Synthetic data</subject><subject>Temporal resolution</subject><subject>Training</subject><subject>Visualization</subject><subject>Zero shot learning</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EElXpzsBgiTnlnHOceEThqygSEu3EYjnuGVLauDgpUv89qdqB5e6G531Pehi7FjAVAvTdopxNU0izKWZpLjJ1xkYpIiZaAp4Pd5ZjAhLVJZt03QoAhNQpFmrEXh_2rd00js8dtcTfyYW26-PO9U1ouQ-Rl2E9zPm2-SZe2g1Fy38byz8ohmT-FXpekY1t035esQtv1x1NTnvMFk-Pi_Ilqd6eZ-V9lTgNkDgqRF4IocDrDGXtyTtZa-2XudKi9nJZW2kL6Sw5hcplyiKQFWJZqwx8imN2e6zdxvCzo643q7CL7fDRoFAC80P3QMGRcjF0XSRvtrHZ2Lg3AszBmRmcmYMzc3I2RG6OkYaI_uEFqkEW_gHz4WcF</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Dong, Yanchen</creator><creator>Xiong, Ruiqin</creator><creator>Fan, Xiaopeng</creator><creator>Zhu, Shuyuan</creator><creator>Wang, Jin</creator><creator>Huang, Tiejun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9660-3636</orcidid><orcidid>https://orcid.org/0000-0001-9796-0478</orcidid><orcidid>https://orcid.org/0000-0001-8011-7193</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0001-5437-3150</orcidid><orcidid>https://orcid.org/0000-0003-4450-3868</orcidid></search><sort><creationdate>20250101</creationdate><title>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</title><author>Dong, Yanchen ; Xiong, Ruiqin ; Fan, Xiaopeng ; Zhu, Shuyuan ; Wang, Jin ; Huang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c900-ce81781160f9534bfefc4b99fd7691bf4dba4a84caec636c56a30ea11db650f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bayer pattern</topic><topic>Cameras</topic><topic>Color</topic><topic>color filter array</topic><topic>Color imagery</topic><topic>color imaging</topic><topic>demosaicing</topic><topic>high-speed imaging</topic><topic>Image color analysis</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image restoration</topic><topic>Pixels</topic><topic>Sensor arrays</topic><topic>Spike camera</topic><topic>Streaming media</topic><topic>Synthetic data</topic><topic>Temporal resolution</topic><topic>Training</topic><topic>Visualization</topic><topic>Zero shot learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yanchen</creatorcontrib><creatorcontrib>Xiong, Ruiqin</creatorcontrib><creatorcontrib>Fan, Xiaopeng</creatorcontrib><creatorcontrib>Zhu, Shuyuan</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Yanchen</au><au>Xiong, Ruiqin</au><au>Fan, Xiaopeng</au><au>Zhu, Shuyuan</au><au>Wang, Jin</au><au>Huang, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>11</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2025.3527156</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9660-3636</orcidid><orcidid>https://orcid.org/0000-0001-9796-0478</orcidid><orcidid>https://orcid.org/0000-0001-8011-7193</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0001-5437-3150</orcidid><orcidid>https://orcid.org/0000-0003-4450-3868</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2573-0436
ispartof IEEE transactions on computational imaging, 2025-01, Vol.11, p.1-13
issn 2573-0436
2333-9403
language eng
recordid cdi_ieee_primary_10836923
source IEEE Electronic Library (IEL)
subjects Bayer pattern
Cameras
Color
color filter array
Color imagery
color imaging
demosaicing
high-speed imaging
Image color analysis
Image quality
Image reconstruction
Image resolution
Image restoration
Pixels
Sensor arrays
Spike camera
Streaming media
Synthetic data
Temporal resolution
Training
Visualization
Zero shot learning
title Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Scene%20Reconstruction%20for%20Color%20Spike%20Camera%20via%20Zero-Shot%20Learning&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=Dong,%20Yanchen&rft.date=2025-01-01&rft.volume=11&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2025.3527156&rft_dat=%3Cproquest_RIE%3E3161371160%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3161371160&rft_id=info:pmid/&rft_ieee_id=10836923&rfr_iscdi=true