Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning
As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera rec...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational imaging 2025-01, Vol.11, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on computational imaging |
container_volume | 11 |
creator | Dong, Yanchen Xiong, Ruiqin Fan, Xiaopeng Zhu, Shuyuan Wang, Jin Huang, Tiejun |
description | As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC . |
doi_str_mv | 10.1109/TCI.2025.3527156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10836923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10836923</ieee_id><sourcerecordid>3161371160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c900-ce81781160f9534bfefc4b99fd7691bf4dba4a84caec636c56a30ea11db650f23</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EElXpzsBgiTnlnHOceEThqygSEu3EYjnuGVLauDgpUv89qdqB5e6G531Pehi7FjAVAvTdopxNU0izKWZpLjJ1xkYpIiZaAp4Pd5ZjAhLVJZt03QoAhNQpFmrEXh_2rd00js8dtcTfyYW26-PO9U1ouQ-Rl2E9zPm2-SZe2g1Fy38byz8ohmT-FXpekY1t035esQtv1x1NTnvMFk-Pi_Ilqd6eZ-V9lTgNkDgqRF4IocDrDGXtyTtZa-2XudKi9nJZW2kL6Sw5hcplyiKQFWJZqwx8imN2e6zdxvCzo643q7CL7fDRoFAC80P3QMGRcjF0XSRvtrHZ2Lg3AszBmRmcmYMzc3I2RG6OkYaI_uEFqkEW_gHz4WcF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3161371160</pqid></control><display><type>article</type><title>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Yanchen ; Xiong, Ruiqin ; Fan, Xiaopeng ; Zhu, Shuyuan ; Wang, Jin ; Huang, Tiejun</creator><creatorcontrib>Dong, Yanchen ; Xiong, Ruiqin ; Fan, Xiaopeng ; Zhu, Shuyuan ; Wang, Jin ; Huang, Tiejun</creatorcontrib><description>As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2025.3527156</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayer pattern ; Cameras ; Color ; color filter array ; Color imagery ; color imaging ; demosaicing ; high-speed imaging ; Image color analysis ; Image quality ; Image reconstruction ; Image resolution ; Image restoration ; Pixels ; Sensor arrays ; Spike camera ; Streaming media ; Synthetic data ; Temporal resolution ; Training ; Visualization ; Zero shot learning</subject><ispartof>IEEE transactions on computational imaging, 2025-01, Vol.11, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c900-ce81781160f9534bfefc4b99fd7691bf4dba4a84caec636c56a30ea11db650f23</cites><orcidid>0000-0002-9660-3636 ; 0000-0001-9796-0478 ; 0000-0001-8011-7193 ; 0000-0002-4234-6099 ; 0000-0001-5437-3150 ; 0000-0003-4450-3868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10836923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10836923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Yanchen</creatorcontrib><creatorcontrib>Xiong, Ruiqin</creatorcontrib><creatorcontrib>Fan, Xiaopeng</creatorcontrib><creatorcontrib>Zhu, Shuyuan</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><title>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .</description><subject>Bayer pattern</subject><subject>Cameras</subject><subject>Color</subject><subject>color filter array</subject><subject>Color imagery</subject><subject>color imaging</subject><subject>demosaicing</subject><subject>high-speed imaging</subject><subject>Image color analysis</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image restoration</subject><subject>Pixels</subject><subject>Sensor arrays</subject><subject>Spike camera</subject><subject>Streaming media</subject><subject>Synthetic data</subject><subject>Temporal resolution</subject><subject>Training</subject><subject>Visualization</subject><subject>Zero shot learning</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EElXpzsBgiTnlnHOceEThqygSEu3EYjnuGVLauDgpUv89qdqB5e6G531Pehi7FjAVAvTdopxNU0izKWZpLjJ1xkYpIiZaAp4Pd5ZjAhLVJZt03QoAhNQpFmrEXh_2rd00js8dtcTfyYW26-PO9U1ouQ-Rl2E9zPm2-SZe2g1Fy38byz8ohmT-FXpekY1t035esQtv1x1NTnvMFk-Pi_Ilqd6eZ-V9lTgNkDgqRF4IocDrDGXtyTtZa-2XudKi9nJZW2kL6Sw5hcplyiKQFWJZqwx8imN2e6zdxvCzo643q7CL7fDRoFAC80P3QMGRcjF0XSRvtrHZ2Lg3AszBmRmcmYMzc3I2RG6OkYaI_uEFqkEW_gHz4WcF</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Dong, Yanchen</creator><creator>Xiong, Ruiqin</creator><creator>Fan, Xiaopeng</creator><creator>Zhu, Shuyuan</creator><creator>Wang, Jin</creator><creator>Huang, Tiejun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9660-3636</orcidid><orcidid>https://orcid.org/0000-0001-9796-0478</orcidid><orcidid>https://orcid.org/0000-0001-8011-7193</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0001-5437-3150</orcidid><orcidid>https://orcid.org/0000-0003-4450-3868</orcidid></search><sort><creationdate>20250101</creationdate><title>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</title><author>Dong, Yanchen ; Xiong, Ruiqin ; Fan, Xiaopeng ; Zhu, Shuyuan ; Wang, Jin ; Huang, Tiejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c900-ce81781160f9534bfefc4b99fd7691bf4dba4a84caec636c56a30ea11db650f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bayer pattern</topic><topic>Cameras</topic><topic>Color</topic><topic>color filter array</topic><topic>Color imagery</topic><topic>color imaging</topic><topic>demosaicing</topic><topic>high-speed imaging</topic><topic>Image color analysis</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image restoration</topic><topic>Pixels</topic><topic>Sensor arrays</topic><topic>Spike camera</topic><topic>Streaming media</topic><topic>Synthetic data</topic><topic>Temporal resolution</topic><topic>Training</topic><topic>Visualization</topic><topic>Zero shot learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yanchen</creatorcontrib><creatorcontrib>Xiong, Ruiqin</creatorcontrib><creatorcontrib>Fan, Xiaopeng</creatorcontrib><creatorcontrib>Zhu, Shuyuan</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Huang, Tiejun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Yanchen</au><au>Xiong, Ruiqin</au><au>Fan, Xiaopeng</au><au>Zhu, Shuyuan</au><au>Wang, Jin</au><au>Huang, Tiejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>11</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>As a neuromorphic vision sensor with ultra-high temporal resolution, spike camera shows great potential in high-speed imaging. To capture color information of dynamic scenes, color spike camera (CSC) has been invented with a Bayer-pattern color filter array (CFA) on the sensor. Some spike camera reconstruction methods try to train end-to-end models by massive synthetic data pairs. However, there are gaps between synthetic and real-world captured data. The distribution of training data impacts model generalizability. In this paper, we propose a zero-shot learning-based method for CSC reconstruction to restore color images from a Bayer-pattern spike stream without pre-training. As the Bayer-pattern spike stream consists of binary signal arrays with missing pixels, we propose to leverage temporally neighboring spike signals of frame, pixel and interval levels to restore color channels. In particular, we employ a zero-shot learning-based scheme to iteratively refine the output via temporally neighboring spike stream clips. To generate high-quality pseudo-labels, we propose to exploit temporally neighboring pixels along the motion direction to estimate the missing pixels. Besides, a temporally neighboring spike interval-based representation is developed to extract temporal and color features from the binary Bayer-pattern spike stream. Experimental results on real-world captured data demonstrate that our method can restore color images with better visual quality than compared methods. The resources of the work are available at https://github.com/csycdong/ZSL-CSC .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2025.3527156</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9660-3636</orcidid><orcidid>https://orcid.org/0000-0001-9796-0478</orcidid><orcidid>https://orcid.org/0000-0001-8011-7193</orcidid><orcidid>https://orcid.org/0000-0002-4234-6099</orcidid><orcidid>https://orcid.org/0000-0001-5437-3150</orcidid><orcidid>https://orcid.org/0000-0003-4450-3868</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2573-0436 |
ispartof | IEEE transactions on computational imaging, 2025-01, Vol.11, p.1-13 |
issn | 2573-0436 2333-9403 |
language | eng |
recordid | cdi_ieee_primary_10836923 |
source | IEEE Electronic Library (IEL) |
subjects | Bayer pattern Cameras Color color filter array Color imagery color imaging demosaicing high-speed imaging Image color analysis Image quality Image reconstruction Image resolution Image restoration Pixels Sensor arrays Spike camera Streaming media Synthetic data Temporal resolution Training Visualization Zero shot learning |
title | Dynamic Scene Reconstruction for Color Spike Camera via Zero-Shot Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Scene%20Reconstruction%20for%20Color%20Spike%20Camera%20via%20Zero-Shot%20Learning&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=Dong,%20Yanchen&rft.date=2025-01-01&rft.volume=11&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2025.3527156&rft_dat=%3Cproquest_RIE%3E3161371160%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3161371160&rft_id=info:pmid/&rft_ieee_id=10836923&rfr_iscdi=true |