Synthesis of Active and Passive Compatible Impedances
This paper is concerned with the following problem: given two rational functions Z_1(s) and Z_0(s) , otherwise arbitrary but for which R + Z_1(s) has no zeros in the right-half plane, Z_1(s) is to be realized as the driving-point impedance of a lossless coupling two-port terminated in the impedance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuit theory 1967-01, Vol.14 (2), p.118-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 2 |
container_start_page | 118 |
container_title | IEEE transactions on circuit theory |
container_volume | 14 |
creator | Chung-Wen Ho Balabanian, N. |
description | This paper is concerned with the following problem: given two rational functions Z_1(s) and Z_0(s) , otherwise arbitrary but for which R + Z_1(s) has no zeros in the right-half plane, Z_1(s) is to be realized as the driving-point impedance of a lossless coupling two-port terminated in the impedance Z_0(s) . This problem had been previously considered and solved by Schoeffler and by Wohlers when Z_1(s) and Z_0(s) are positive real functions and the coupling network is reciprocal. Necessary and sufficient conditions are given here for realizability in the contemplated form when neither of the two impedances are necessarily positive real and when the coupling network may be reciprocal or nonreciprocal, but still lossless. A realization procedure is described and examples are given to illustrate the approach. |
doi_str_mv | 10.1109/TCT.1967.1082683 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_1082683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1082683</ieee_id><sourcerecordid>10_1109_TCT_1967_1082683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-2f2cbe02a1d3b5731905c16d26f353e6ef038bb9fcc229847c752c346109690b3</originalsourceid><addsrcrecordid>eNpNz01LxDAQBuAgCtZd74KX_oHWSdKkzXEp6i4sKNg9hySdYGX7QVOE_fe2dA-eZmDed-Ah5IlCSimol6qsUqpknlIomCz4DYkYz7NECSFuSQRAi0Rxlt2ThxB-ADgIpSIivi7d9I2hCXHv452bml-MTVfHnyaEZS_7djBTY88YH9oBa9M5DFty58054ON1bsjp7bUq98nx4_1Q7o6JY5JOCfPMWQRmaM2tyDlVIByVNZOeC44SPfDCWuWdY0wVWe5ywRzP5AySCizfEFj_urEPYUSvh7FpzXjRFPTC1jNbL2x9Zc-V57XSIOK_-Hr9A_1VUns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis of Active and Passive Compatible Impedances</title><source>IEEE Xplore</source><creator>Chung-Wen Ho ; Balabanian, N.</creator><creatorcontrib>Chung-Wen Ho ; Balabanian, N.</creatorcontrib><description>This paper is concerned with the following problem: given two rational functions Z_1(s) and Z_0(s) , otherwise arbitrary but for which R + Z_1(s) has no zeros in the right-half plane, Z_1(s) is to be realized as the driving-point impedance of a lossless coupling two-port terminated in the impedance Z_0(s) . This problem had been previously considered and solved by Schoeffler and by Wohlers when Z_1(s) and Z_0(s) are positive real functions and the coupling network is reciprocal. Necessary and sufficient conditions are given here for realizability in the contemplated form when neither of the two impedances are necessarily positive real and when the coupling network may be reciprocal or nonreciprocal, but still lossless. A realization procedure is described and examples are given to illustrate the approach.</description><identifier>ISSN: 0018-9324</identifier><identifier>EISSN: 2374-9555</identifier><identifier>DOI: 10.1109/TCT.1967.1082683</identifier><identifier>CODEN: ICSYBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit synthesis ; Circuit theory ; Impedance ; Matched filters ; Network synthesis ; Reflection ; Resistors ; Scattering parameters ; Signal synthesis</subject><ispartof>IEEE transactions on circuit theory, 1967-01, Vol.14 (2), p.118-128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-2f2cbe02a1d3b5731905c16d26f353e6ef038bb9fcc229847c752c346109690b3</citedby><cites>FETCH-LOGICAL-c261t-2f2cbe02a1d3b5731905c16d26f353e6ef038bb9fcc229847c752c346109690b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1082683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1082683$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chung-Wen Ho</creatorcontrib><creatorcontrib>Balabanian, N.</creatorcontrib><title>Synthesis of Active and Passive Compatible Impedances</title><title>IEEE transactions on circuit theory</title><addtitle>T-CAS</addtitle><description>This paper is concerned with the following problem: given two rational functions Z_1(s) and Z_0(s) , otherwise arbitrary but for which R + Z_1(s) has no zeros in the right-half plane, Z_1(s) is to be realized as the driving-point impedance of a lossless coupling two-port terminated in the impedance Z_0(s) . This problem had been previously considered and solved by Schoeffler and by Wohlers when Z_1(s) and Z_0(s) are positive real functions and the coupling network is reciprocal. Necessary and sufficient conditions are given here for realizability in the contemplated form when neither of the two impedances are necessarily positive real and when the coupling network may be reciprocal or nonreciprocal, but still lossless. A realization procedure is described and examples are given to illustrate the approach.</description><subject>Circuit synthesis</subject><subject>Circuit theory</subject><subject>Impedance</subject><subject>Matched filters</subject><subject>Network synthesis</subject><subject>Reflection</subject><subject>Resistors</subject><subject>Scattering parameters</subject><subject>Signal synthesis</subject><issn>0018-9324</issn><issn>2374-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNpNz01LxDAQBuAgCtZd74KX_oHWSdKkzXEp6i4sKNg9hySdYGX7QVOE_fe2dA-eZmDed-Ah5IlCSimol6qsUqpknlIomCz4DYkYz7NECSFuSQRAi0Rxlt2ThxB-ADgIpSIivi7d9I2hCXHv452bml-MTVfHnyaEZS_7djBTY88YH9oBa9M5DFty58054ON1bsjp7bUq98nx4_1Q7o6JY5JOCfPMWQRmaM2tyDlVIByVNZOeC44SPfDCWuWdY0wVWe5ywRzP5AySCizfEFj_urEPYUSvh7FpzXjRFPTC1jNbL2x9Zc-V57XSIOK_-Hr9A_1VUns</recordid><startdate>19670101</startdate><enddate>19670101</enddate><creator>Chung-Wen Ho</creator><creator>Balabanian, N.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19670101</creationdate><title>Synthesis of Active and Passive Compatible Impedances</title><author>Chung-Wen Ho ; Balabanian, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-2f2cbe02a1d3b5731905c16d26f353e6ef038bb9fcc229847c752c346109690b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Circuit synthesis</topic><topic>Circuit theory</topic><topic>Impedance</topic><topic>Matched filters</topic><topic>Network synthesis</topic><topic>Reflection</topic><topic>Resistors</topic><topic>Scattering parameters</topic><topic>Signal synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chung-Wen Ho</creatorcontrib><creatorcontrib>Balabanian, N.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on circuit theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chung-Wen Ho</au><au>Balabanian, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Active and Passive Compatible Impedances</atitle><jtitle>IEEE transactions on circuit theory</jtitle><stitle>T-CAS</stitle><date>1967-01-01</date><risdate>1967</risdate><volume>14</volume><issue>2</issue><spage>118</spage><epage>128</epage><pages>118-128</pages><issn>0018-9324</issn><eissn>2374-9555</eissn><coden>ICSYBT</coden><abstract>This paper is concerned with the following problem: given two rational functions Z_1(s) and Z_0(s) , otherwise arbitrary but for which R + Z_1(s) has no zeros in the right-half plane, Z_1(s) is to be realized as the driving-point impedance of a lossless coupling two-port terminated in the impedance Z_0(s) . This problem had been previously considered and solved by Schoeffler and by Wohlers when Z_1(s) and Z_0(s) are positive real functions and the coupling network is reciprocal. Necessary and sufficient conditions are given here for realizability in the contemplated form when neither of the two impedances are necessarily positive real and when the coupling network may be reciprocal or nonreciprocal, but still lossless. A realization procedure is described and examples are given to illustrate the approach.</abstract><pub>IEEE</pub><doi>10.1109/TCT.1967.1082683</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9324 |
ispartof | IEEE transactions on circuit theory, 1967-01, Vol.14 (2), p.118-128 |
issn | 0018-9324 2374-9555 |
language | eng |
recordid | cdi_ieee_primary_1082683 |
source | IEEE Xplore |
subjects | Circuit synthesis Circuit theory Impedance Matched filters Network synthesis Reflection Resistors Scattering parameters Signal synthesis |
title | Synthesis of Active and Passive Compatible Impedances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Active%20and%20Passive%20Compatible%20Impedances&rft.jtitle=IEEE%20transactions%20on%20circuit%20theory&rft.au=Chung-Wen%20Ho&rft.date=1967-01-01&rft.volume=14&rft.issue=2&rft.spage=118&rft.epage=128&rft.pages=118-128&rft.issn=0018-9324&rft.eissn=2374-9555&rft.coden=ICSYBT&rft_id=info:doi/10.1109/TCT.1967.1082683&rft_dat=%3Ccrossref_RIE%3E10_1109_TCT_1967_1082683%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1082683&rfr_iscdi=true |