Compact workspace decomposition based on a bottom-up approach

In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025-01, Vol.13, p.1-1
Hauptverfasser: Skorobogatov, Georgy, Calvo, Toni, Barrado, Cristina, Salami, Esther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 13
creator Skorobogatov, Georgy
Calvo, Toni
Barrado, Cristina
Salami, Esther
description In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.
doi_str_mv 10.1109/ACCESS.2025.3525800
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10824800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10824800</ieee_id><doaj_id>oai_doaj_org_article_b017e7882b8244e38508ef7d3dbd311d</doaj_id><sourcerecordid>3153911337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1597-66405c5d6e79986cf74da1efcf6e23d7c3c5981416dc28fed04c400293108ecc3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVfAIdInFP8iF8HDlVUoBISh8LZcuwNpFAc7FSIv8clFaovHs3uzO4OQpcEzwnB-mZR18v1ek4x5XPGKVcYn6AJJUKXjDNxeoTP0SylDc5PZYrLCbqtw7a3bii-Q3xPGUHhwWUupG7owmfR2AS-yMAWTRiGsC13fWH7Pgbr3i7QWWs_EswO_xS93C2f64fy8el-VS8eS0e4lqUQFeaOewFSayVcKytvCbSuFUCZl445rhWpiPCOqhY8rlyFMdWMYAXOsSlajb4-2I3pY7e18ccE25k_IsRXY-PQuQ8wDSYSpFK0UbSqgCmeLVrpmW88I8Rnr-vRK5_wtYM0mE3Yxc-8vmGEM00IYzJ3sbHLxZBShPZ_KsFmH7sZYzf72M0h9qy6GlUdABwp8ir78i-bbnzO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153911337</pqid></control><display><type>article</type><title>Compact workspace decomposition based on a bottom-up approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Skorobogatov, Georgy ; Calvo, Toni ; Barrado, Cristina ; Salami, Esther</creator><creatorcontrib>Skorobogatov, Georgy ; Calvo, Toni ; Barrado, Cristina ; Salami, Esther</creatorcontrib><description>In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3525800</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Area measurement ; Autonomous aerial vehicles ; Classification algorithms ; Clustering algorithms ; Decomposition ; Drones ; Maximization ; multi-robot systems ; Optimization ; Partitioning algorithms ; polygon partition ; Polygons ; Robots ; Sensors ; Shape ; UAV ; workspace division</subject><ispartof>IEEE access, 2025-01, Vol.13, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1597-66405c5d6e79986cf74da1efcf6e23d7c3c5981416dc28fed04c400293108ecc3</cites><orcidid>0000-0003-2536-1470 ; 0000-0003-0100-724X ; 0000-0002-4635-2963 ; 0009-0003-1396-2831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10824800$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Skorobogatov, Georgy</creatorcontrib><creatorcontrib>Calvo, Toni</creatorcontrib><creatorcontrib>Barrado, Cristina</creatorcontrib><creatorcontrib>Salami, Esther</creatorcontrib><title>Compact workspace decomposition based on a bottom-up approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Area measurement</subject><subject>Autonomous aerial vehicles</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Decomposition</subject><subject>Drones</subject><subject>Maximization</subject><subject>multi-robot systems</subject><subject>Optimization</subject><subject>Partitioning algorithms</subject><subject>polygon partition</subject><subject>Polygons</subject><subject>Robots</subject><subject>Sensors</subject><subject>Shape</subject><subject>UAV</subject><subject>workspace division</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVfAIdInFP8iF8HDlVUoBISh8LZcuwNpFAc7FSIv8clFaovHs3uzO4OQpcEzwnB-mZR18v1ek4x5XPGKVcYn6AJJUKXjDNxeoTP0SylDc5PZYrLCbqtw7a3bii-Q3xPGUHhwWUupG7owmfR2AS-yMAWTRiGsC13fWH7Pgbr3i7QWWs_EswO_xS93C2f64fy8el-VS8eS0e4lqUQFeaOewFSayVcKytvCbSuFUCZl445rhWpiPCOqhY8rlyFMdWMYAXOsSlajb4-2I3pY7e18ccE25k_IsRXY-PQuQ8wDSYSpFK0UbSqgCmeLVrpmW88I8Rnr-vRK5_wtYM0mE3Yxc-8vmGEM00IYzJ3sbHLxZBShPZ_KsFmH7sZYzf72M0h9qy6GlUdABwp8ir78i-bbnzO</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Skorobogatov, Georgy</creator><creator>Calvo, Toni</creator><creator>Barrado, Cristina</creator><creator>Salami, Esther</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2536-1470</orcidid><orcidid>https://orcid.org/0000-0003-0100-724X</orcidid><orcidid>https://orcid.org/0000-0002-4635-2963</orcidid><orcidid>https://orcid.org/0009-0003-1396-2831</orcidid></search><sort><creationdate>20250101</creationdate><title>Compact workspace decomposition based on a bottom-up approach</title><author>Skorobogatov, Georgy ; Calvo, Toni ; Barrado, Cristina ; Salami, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1597-66405c5d6e79986cf74da1efcf6e23d7c3c5981416dc28fed04c400293108ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Area measurement</topic><topic>Autonomous aerial vehicles</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Decomposition</topic><topic>Drones</topic><topic>Maximization</topic><topic>multi-robot systems</topic><topic>Optimization</topic><topic>Partitioning algorithms</topic><topic>polygon partition</topic><topic>Polygons</topic><topic>Robots</topic><topic>Sensors</topic><topic>Shape</topic><topic>UAV</topic><topic>workspace division</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skorobogatov, Georgy</creatorcontrib><creatorcontrib>Calvo, Toni</creatorcontrib><creatorcontrib>Barrado, Cristina</creatorcontrib><creatorcontrib>Salami, Esther</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skorobogatov, Georgy</au><au>Calvo, Toni</au><au>Barrado, Cristina</au><au>Salami, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact workspace decomposition based on a bottom-up approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3525800</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2536-1470</orcidid><orcidid>https://orcid.org/0000-0003-0100-724X</orcidid><orcidid>https://orcid.org/0000-0002-4635-2963</orcidid><orcidid>https://orcid.org/0009-0003-1396-2831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025-01, Vol.13, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10824800
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Approximation algorithms
Area measurement
Autonomous aerial vehicles
Classification algorithms
Clustering algorithms
Decomposition
Drones
Maximization
multi-robot systems
Optimization
Partitioning algorithms
polygon partition
Polygons
Robots
Sensors
Shape
UAV
workspace division
title Compact workspace decomposition based on a bottom-up approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20workspace%20decomposition%20based%20on%20a%20bottom-up%20approach&rft.jtitle=IEEE%20access&rft.au=Skorobogatov,%20Georgy&rft.date=2025-01-01&rft.volume=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3525800&rft_dat=%3Cproquest_ieee_%3E3153911337%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153911337&rft_id=info:pmid/&rft_ieee_id=10824800&rft_doaj_id=oai_doaj_org_article_b017e7882b8244e38508ef7d3dbd311d&rfr_iscdi=true