Compact workspace decomposition based on a bottom-up approach
In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy...
Gespeichert in:
Veröffentlicht in: | IEEE access 2025-01, Vol.13, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 13 |
creator | Skorobogatov, Georgy Calvo, Toni Barrado, Cristina Salami, Esther |
description | In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts. |
doi_str_mv | 10.1109/ACCESS.2025.3525800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10824800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10824800</ieee_id><doaj_id>oai_doaj_org_article_b017e7882b8244e38508ef7d3dbd311d</doaj_id><sourcerecordid>3153911337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1597-66405c5d6e79986cf74da1efcf6e23d7c3c5981416dc28fed04c400293108ecc3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVfAIdInFP8iF8HDlVUoBISh8LZcuwNpFAc7FSIv8clFaovHs3uzO4OQpcEzwnB-mZR18v1ek4x5XPGKVcYn6AJJUKXjDNxeoTP0SylDc5PZYrLCbqtw7a3bii-Q3xPGUHhwWUupG7owmfR2AS-yMAWTRiGsC13fWH7Pgbr3i7QWWs_EswO_xS93C2f64fy8el-VS8eS0e4lqUQFeaOewFSayVcKytvCbSuFUCZl445rhWpiPCOqhY8rlyFMdWMYAXOsSlajb4-2I3pY7e18ccE25k_IsRXY-PQuQ8wDSYSpFK0UbSqgCmeLVrpmW88I8Rnr-vRK5_wtYM0mE3Yxc-8vmGEM00IYzJ3sbHLxZBShPZ_KsFmH7sZYzf72M0h9qy6GlUdABwp8ir78i-bbnzO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153911337</pqid></control><display><type>article</type><title>Compact workspace decomposition based on a bottom-up approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Skorobogatov, Georgy ; Calvo, Toni ; Barrado, Cristina ; Salami, Esther</creator><creatorcontrib>Skorobogatov, Georgy ; Calvo, Toni ; Barrado, Cristina ; Salami, Esther</creatorcontrib><description>In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3525800</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Area measurement ; Autonomous aerial vehicles ; Classification algorithms ; Clustering algorithms ; Decomposition ; Drones ; Maximization ; multi-robot systems ; Optimization ; Partitioning algorithms ; polygon partition ; Polygons ; Robots ; Sensors ; Shape ; UAV ; workspace division</subject><ispartof>IEEE access, 2025-01, Vol.13, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1597-66405c5d6e79986cf74da1efcf6e23d7c3c5981416dc28fed04c400293108ecc3</cites><orcidid>0000-0003-2536-1470 ; 0000-0003-0100-724X ; 0000-0002-4635-2963 ; 0009-0003-1396-2831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10824800$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Skorobogatov, Georgy</creatorcontrib><creatorcontrib>Calvo, Toni</creatorcontrib><creatorcontrib>Barrado, Cristina</creatorcontrib><creatorcontrib>Salami, Esther</creatorcontrib><title>Compact workspace decomposition based on a bottom-up approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Area measurement</subject><subject>Autonomous aerial vehicles</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Decomposition</subject><subject>Drones</subject><subject>Maximization</subject><subject>multi-robot systems</subject><subject>Optimization</subject><subject>Partitioning algorithms</subject><subject>polygon partition</subject><subject>Polygons</subject><subject>Robots</subject><subject>Sensors</subject><subject>Shape</subject><subject>UAV</subject><subject>workspace division</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVfAIdInFP8iF8HDlVUoBISh8LZcuwNpFAc7FSIv8clFaovHs3uzO4OQpcEzwnB-mZR18v1ek4x5XPGKVcYn6AJJUKXjDNxeoTP0SylDc5PZYrLCbqtw7a3bii-Q3xPGUHhwWUupG7owmfR2AS-yMAWTRiGsC13fWH7Pgbr3i7QWWs_EswO_xS93C2f64fy8el-VS8eS0e4lqUQFeaOewFSayVcKytvCbSuFUCZl445rhWpiPCOqhY8rlyFMdWMYAXOsSlajb4-2I3pY7e18ccE25k_IsRXY-PQuQ8wDSYSpFK0UbSqgCmeLVrpmW88I8Rnr-vRK5_wtYM0mE3Yxc-8vmGEM00IYzJ3sbHLxZBShPZ_KsFmH7sZYzf72M0h9qy6GlUdABwp8ir78i-bbnzO</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Skorobogatov, Georgy</creator><creator>Calvo, Toni</creator><creator>Barrado, Cristina</creator><creator>Salami, Esther</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2536-1470</orcidid><orcidid>https://orcid.org/0000-0003-0100-724X</orcidid><orcidid>https://orcid.org/0000-0002-4635-2963</orcidid><orcidid>https://orcid.org/0009-0003-1396-2831</orcidid></search><sort><creationdate>20250101</creationdate><title>Compact workspace decomposition based on a bottom-up approach</title><author>Skorobogatov, Georgy ; Calvo, Toni ; Barrado, Cristina ; Salami, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1597-66405c5d6e79986cf74da1efcf6e23d7c3c5981416dc28fed04c400293108ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Area measurement</topic><topic>Autonomous aerial vehicles</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Decomposition</topic><topic>Drones</topic><topic>Maximization</topic><topic>multi-robot systems</topic><topic>Optimization</topic><topic>Partitioning algorithms</topic><topic>polygon partition</topic><topic>Polygons</topic><topic>Robots</topic><topic>Sensors</topic><topic>Shape</topic><topic>UAV</topic><topic>workspace division</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skorobogatov, Georgy</creatorcontrib><creatorcontrib>Calvo, Toni</creatorcontrib><creatorcontrib>Barrado, Cristina</creatorcontrib><creatorcontrib>Salami, Esther</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skorobogatov, Georgy</au><au>Calvo, Toni</au><au>Barrado, Cristina</au><au>Salami, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact workspace decomposition based on a bottom-up approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we present an algorithm that addresses the challenge of dividing a workspace among multiple UAVs. The workspace can be any convex or non-convex polygon and may contain holes of various shapes that represent no-fly zones. The UAVs can be heterogeneous, with different levels of autonomy, speed, and range. The goal of the workspace division is to obtain areas whose sizes are best matched to the capabilities of the UAVs while maximizing compactness. The algorithm decomposes the polygon representing the workspace into a triangular grid, followed by an iterative process of accumulating adjacent triangles while maximizing the compactness of the resulting regions. The performance of the algorithm and the quality of the partitions generated by the algorithm are compared to existing methods. Results show that this approach outperforms others in several metrics, achieving a 5% to 10% improvement in compactness, while maintaining reasonable performance, with a time overhead of up to approximately two seconds when splitting a polygon into ten parts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3525800</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2536-1470</orcidid><orcidid>https://orcid.org/0000-0003-0100-724X</orcidid><orcidid>https://orcid.org/0000-0002-4635-2963</orcidid><orcidid>https://orcid.org/0009-0003-1396-2831</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025-01, Vol.13, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10824800 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Approximation algorithms Area measurement Autonomous aerial vehicles Classification algorithms Clustering algorithms Decomposition Drones Maximization multi-robot systems Optimization Partitioning algorithms polygon partition Polygons Robots Sensors Shape UAV workspace division |
title | Compact workspace decomposition based on a bottom-up approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20workspace%20decomposition%20based%20on%20a%20bottom-up%20approach&rft.jtitle=IEEE%20access&rft.au=Skorobogatov,%20Georgy&rft.date=2025-01-01&rft.volume=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3525800&rft_dat=%3Cproquest_ieee_%3E3153911337%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153911337&rft_id=info:pmid/&rft_ieee_id=10824800&rft_doaj_id=oai_doaj_org_article_b017e7882b8244e38508ef7d3dbd311d&rfr_iscdi=true |