Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning

Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2025, Vol.33, p.162-174
Hauptverfasser: Du, Junling, Wang, Shangyu, Chen, Rentong, Wang, Shaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue
container_start_page 162
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 33
creator Du, Junling
Wang, Shangyu
Chen, Rentong
Wang, Shaoping
description Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve satisfactory performance. Besides, the potential association between brain functional networks(BFN) and ASD symptom severity remains under investigation. To address these problems, we propose a low&high-level BFN distance method and an adaptive multi-label distribution(HBFND-AMLD) technique for ASD severity identification. First, a low-level and high-level BFN distance(HBFND) is proposed to construct BFN that reflects differences in ASD severity. This method can measure the distance between the ASD and the health control(HC) on the low-order and high-order BFN respectively, which can distinguish the severity of ASD. After that, a multi-task network is proposed for ASD severity identification which considers the individual differences of ASD severity in communication and society, which considers the individual differences in language and social skills of ASD patients. Finally, a novel adaptive label distribution(ALD) technique is employed to train the ASD severity identification model, effectively preventing network overfitting by restricting label probability distribution. We evaluate the proposed framework on the public ABIDE I dataset. The promising results obtained by our framework outperform the state-of-the-art methods with an increase in identification performance, indicating that it has a potential clinical prospect for practical ASD severity diagnosis.
doi_str_mv 10.1109/TNSRE.2024.3516216
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10821533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10821533</ieee_id><doaj_id>oai_doaj_org_article_555f96cffd6548989eeb0c80e36bf2bd</doaj_id><sourcerecordid>oai_doaj_org_article_555f96cffd6548989eeb0c80e36bf2bd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-e5ca8ad1ba8bcca8a23781b835736638ae64eca6d161de52852eb9d639cf444f3</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdR8PgC4kVeYGsOmzR76dmFqmDrdZgkE4m2uyUbW3x7t62IVzPM8P3D8BXFOaMjxmh9OXuevt6NOOXVSEimOFN7xRGTUpeUM7q_6UVVVoLTw-K47z8oZWMlx0fFulksU7eK7TsJT69NeQ09enL1lWO_IFNcYYr5mzQe2xxDdJBj15JVBHKdILbkGfO6S5_kNvYZWocE2oH2sMxxhWQCFufbXYr2a4tOEFI7XDstDgLMezz7rSfF2_3d7OaxnLw8NDdXk9JxJnOJ0oEGzyxo6zYtF2PNrBZyLJQSGlBV6EB5pphHybXkaGuvRO1CVVVBnBTNLtd38GGWKS4gfZsOotkOuvRuIOXo5miklKFWLgSvZKVrXSNa6jRFoWzg1g9ZfJflUtf3CcNfHqNmo8FsNZiNBvOrYYAudlBExH-AHv4TQvwAyO2GeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Du, Junling ; Wang, Shangyu ; Chen, Rentong ; Wang, Shaoping</creator><creatorcontrib>Du, Junling ; Wang, Shangyu ; Chen, Rentong ; Wang, Shaoping</creatorcontrib><description>Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve satisfactory performance. Besides, the potential association between brain functional networks(BFN) and ASD symptom severity remains under investigation. To address these problems, we propose a low&amp;high-level BFN distance method and an adaptive multi-label distribution(HBFND-AMLD) technique for ASD severity identification. First, a low-level and high-level BFN distance(HBFND) is proposed to construct BFN that reflects differences in ASD severity. This method can measure the distance between the ASD and the health control(HC) on the low-order and high-order BFN respectively, which can distinguish the severity of ASD. After that, a multi-task network is proposed for ASD severity identification which considers the individual differences of ASD severity in communication and society, which considers the individual differences in language and social skills of ASD patients. Finally, a novel adaptive label distribution(ALD) technique is employed to train the ASD severity identification model, effectively preventing network overfitting by restricting label probability distribution. We evaluate the proposed framework on the public ABIDE I dataset. The promising results obtained by our framework outperform the state-of-the-art methods with an increase in identification performance, indicating that it has a potential clinical prospect for practical ASD severity diagnosis.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3516216</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; Adaptive systems ; Autism ; Autism spectrum disorder ; Brain modeling ; functional magnetic resonance imaging ; high-level brain functional network ; label distribution learning ; Overfitting ; Probability distribution ; Semisupervised learning ; Training ; Transfer learning</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2025, Vol.33, p.162-174</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c215t-e5ca8ad1ba8bcca8a23781b835736638ae64eca6d161de52852eb9d639cf444f3</cites><orcidid>0000-0002-8102-3436 ; 0000-0002-3264-7189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Du, Junling</creatorcontrib><creatorcontrib>Wang, Shangyu</creatorcontrib><creatorcontrib>Chen, Rentong</creatorcontrib><creatorcontrib>Wang, Shaoping</creatorcontrib><title>Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve satisfactory performance. Besides, the potential association between brain functional networks(BFN) and ASD symptom severity remains under investigation. To address these problems, we propose a low&amp;high-level BFN distance method and an adaptive multi-label distribution(HBFND-AMLD) technique for ASD severity identification. First, a low-level and high-level BFN distance(HBFND) is proposed to construct BFN that reflects differences in ASD severity. This method can measure the distance between the ASD and the health control(HC) on the low-order and high-order BFN respectively, which can distinguish the severity of ASD. After that, a multi-task network is proposed for ASD severity identification which considers the individual differences of ASD severity in communication and society, which considers the individual differences in language and social skills of ASD patients. Finally, a novel adaptive label distribution(ALD) technique is employed to train the ASD severity identification model, effectively preventing network overfitting by restricting label probability distribution. We evaluate the proposed framework on the public ABIDE I dataset. The promising results obtained by our framework outperform the state-of-the-art methods with an increase in identification performance, indicating that it has a potential clinical prospect for practical ASD severity diagnosis.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Autism</subject><subject>Autism spectrum disorder</subject><subject>Brain modeling</subject><subject>functional magnetic resonance imaging</subject><subject>high-level brain functional network</subject><subject>label distribution learning</subject><subject>Overfitting</subject><subject>Probability distribution</subject><subject>Semisupervised learning</subject><subject>Training</subject><subject>Transfer learning</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdR8PgC4kVeYGsOmzR76dmFqmDrdZgkE4m2uyUbW3x7t62IVzPM8P3D8BXFOaMjxmh9OXuevt6NOOXVSEimOFN7xRGTUpeUM7q_6UVVVoLTw-K47z8oZWMlx0fFulksU7eK7TsJT69NeQ09enL1lWO_IFNcYYr5mzQe2xxDdJBj15JVBHKdILbkGfO6S5_kNvYZWocE2oH2sMxxhWQCFufbXYr2a4tOEFI7XDstDgLMezz7rSfF2_3d7OaxnLw8NDdXk9JxJnOJ0oEGzyxo6zYtF2PNrBZyLJQSGlBV6EB5pphHybXkaGuvRO1CVVVBnBTNLtd38GGWKS4gfZsOotkOuvRuIOXo5miklKFWLgSvZKVrXSNa6jRFoWzg1g9ZfJflUtf3CcNfHqNmo8FsNZiNBvOrYYAudlBExH-AHv4TQvwAyO2GeA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Du, Junling</creator><creator>Wang, Shangyu</creator><creator>Chen, Rentong</creator><creator>Wang, Shaoping</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8102-3436</orcidid><orcidid>https://orcid.org/0000-0002-3264-7189</orcidid></search><sort><creationdate>2025</creationdate><title>Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning</title><author>Du, Junling ; Wang, Shangyu ; Chen, Rentong ; Wang, Shaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-e5ca8ad1ba8bcca8a23781b835736638ae64eca6d161de52852eb9d639cf444f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Autism</topic><topic>Autism spectrum disorder</topic><topic>Brain modeling</topic><topic>functional magnetic resonance imaging</topic><topic>high-level brain functional network</topic><topic>label distribution learning</topic><topic>Overfitting</topic><topic>Probability distribution</topic><topic>Semisupervised learning</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Junling</creatorcontrib><creatorcontrib>Wang, Shangyu</creatorcontrib><creatorcontrib>Chen, Rentong</creatorcontrib><creatorcontrib>Wang, Shaoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Junling</au><au>Wang, Shangyu</au><au>Chen, Rentong</au><au>Wang, Shaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2025</date><risdate>2025</risdate><volume>33</volume><spage>162</spage><epage>174</epage><pages>162-174</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve satisfactory performance. Besides, the potential association between brain functional networks(BFN) and ASD symptom severity remains under investigation. To address these problems, we propose a low&amp;high-level BFN distance method and an adaptive multi-label distribution(HBFND-AMLD) technique for ASD severity identification. First, a low-level and high-level BFN distance(HBFND) is proposed to construct BFN that reflects differences in ASD severity. This method can measure the distance between the ASD and the health control(HC) on the low-order and high-order BFN respectively, which can distinguish the severity of ASD. After that, a multi-task network is proposed for ASD severity identification which considers the individual differences of ASD severity in communication and society, which considers the individual differences in language and social skills of ASD patients. Finally, a novel adaptive label distribution(ALD) technique is employed to train the ASD severity identification model, effectively preventing network overfitting by restricting label probability distribution. We evaluate the proposed framework on the public ABIDE I dataset. The promising results obtained by our framework outperform the state-of-the-art methods with an increase in identification performance, indicating that it has a potential clinical prospect for practical ASD severity diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/TNSRE.2024.3516216</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8102-3436</orcidid><orcidid>https://orcid.org/0000-0002-3264-7189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2025, Vol.33, p.162-174
issn 1534-4320
1558-0210
language eng
recordid cdi_ieee_primary_10821533
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Adaptation models
Adaptive systems
Autism
Autism spectrum disorder
Brain modeling
functional magnetic resonance imaging
high-level brain functional network
label distribution learning
Overfitting
Probability distribution
Semisupervised learning
Training
Transfer learning
title Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20fMRI-Based%20Autism%20Severity%20Identification%20via%20Brain%20Network%20Distance%20and%20Adaptive%20Label%20Distribution%20Learning&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Du,%20Junling&rft.date=2025&rft.volume=33&rft.spage=162&rft.epage=174&rft.pages=162-174&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3516216&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_555f96cffd6548989eeb0c80e36bf2bd%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10821533&rft_doaj_id=oai_doaj_org_article_555f96cffd6548989eeb0c80e36bf2bd&rfr_iscdi=true