Simulation Study on Single-Event Burnout Reliability of 900V 4H-SiC Quasi Vertical Double Diffused MOSFET

In this work, the single-event burnout (SEB) performance and reasons of the proposed 900V SiC quasi-vertical double diffusion MOSFET with deepened drain (T-QVDMOSFET) are analyzed from the spatial distribution of physical quantities such as power density, lattice temperature and total current densit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025, Vol.13, p.5023-5031
Hauptverfasser: Shi, Jin-Ke, Wang, Ying, Fei, Xin-Xing, Sun, Biao, Song, Yan-Xing, Liu, Yu-Qian, Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5031
container_issue
container_start_page 5023
container_title IEEE access
container_volume 13
creator Shi, Jin-Ke
Wang, Ying
Fei, Xin-Xing
Sun, Biao
Song, Yan-Xing
Liu, Yu-Qian
Zhang, Wei
description In this work, the single-event burnout (SEB) performance and reasons of the proposed 900V SiC quasi-vertical double diffusion MOSFET with deepened drain (T-QVDMOSFET) are analyzed from the spatial distribution of physical quantities such as power density, lattice temperature and total current density by 2-D numerical simulation, and a SEB-hardened structure (TB-QVDMOSFET) with buried oxygen layer (BOX) and heavily doped N-type current expansion layer (CSL) inside the device is proposed. Simulation results indicate that when heavy-ion with linear energy transfer (LET) of 0.5pC/ \mu m strikes the device, the primary cause of SEB in the SiC T-QVDMOSFET is the high transient current density and electric field at the trench gate corner. This phenomenon leads to increased power dissipation, resulting in excessive temperatures that ultimately cause thermal failure. The BOX and a heavily doped N-type CSL added in the SEB-hardened structure change the current flow path, and the transient current concentrated in the region is dispersed. This modification reduces the high current density and power dissipation at the trench corner, thereby significantly enhancing the device's resistance to SEB. Compared to the original device, the SEB threshold voltage is increased from 270V to 478V, marking a 77% improvement.
doi_str_mv 10.1109/ACCESS.2024.3524391
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10818673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818673</ieee_id><doaj_id>oai_doaj_org_article_15a7c83a2adb4f498217062473314b39</doaj_id><sourcerecordid>3153911342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2041-df51fda89b0ffceaba2f6a97a9f0378b7ecacca5b69a30dca15252d7e362b7963</originalsourceid><addsrcrecordid>eNpNUdtKxDAULKKg6H6BPgR87ppr0zxqXS-gLFrd13CSJpKlbrQXwb83axcxLzkMM3OGM1l2SvCcEKwuLqtqUddziimfM0E5U2QvO6KkUDkTrNj_Nx9ms75f4_TKBAl5lIU6vI8tDCFuUD2MzTfaDmHz1rp88eU2A7oau00cB_Ts2gAmtGFIHI8UxivE7_I6VOhphD6gleuGYKFF13E0rUPXwfuxdw16XNY3i5eT7MBD27vZ7j_OXhNa3eUPy9v76vIhtxRzkjdeEN9AqQz23jowQH0BSoLymMnSSGfBWhCmUMBwY4EIKmgjHSuokapgx9n95NtEWOuPLrxD960jBP0LxO5NwzZo6zQRIG3JgEJjuOeqpETignLJGOGGqeR1Pnl9dPFzdP2g1zGdI8XXjIh0aMI4TSw2sWwX-75z_m8rwXpbkZ4q0tuK9K6ipDqbVME5909RkrJIAX4AR82LWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153911342</pqid></control><display><type>article</type><title>Simulation Study on Single-Event Burnout Reliability of 900V 4H-SiC Quasi Vertical Double Diffused MOSFET</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shi, Jin-Ke ; Wang, Ying ; Fei, Xin-Xing ; Sun, Biao ; Song, Yan-Xing ; Liu, Yu-Qian ; Zhang, Wei</creator><creatorcontrib>Shi, Jin-Ke ; Wang, Ying ; Fei, Xin-Xing ; Sun, Biao ; Song, Yan-Xing ; Liu, Yu-Qian ; Zhang, Wei</creatorcontrib><description>In this work, the single-event burnout (SEB) performance and reasons of the proposed 900V SiC quasi-vertical double diffusion MOSFET with deepened drain (T-QVDMOSFET) are analyzed from the spatial distribution of physical quantities such as power density, lattice temperature and total current density by 2-D numerical simulation, and a SEB-hardened structure (TB-QVDMOSFET) with buried oxygen layer (BOX) and heavily doped N-type current expansion layer (CSL) inside the device is proposed. Simulation results indicate that when heavy-ion with linear energy transfer (LET) of 0.5pC/&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu &lt;/tex-math&gt;&lt;/inline-formula&gt;m strikes the device, the primary cause of SEB in the SiC T-QVDMOSFET is the high transient current density and electric field at the trench gate corner. This phenomenon leads to increased power dissipation, resulting in excessive temperatures that ultimately cause thermal failure. The BOX and a heavily doped N-type CSL added in the SEB-hardened structure change the current flow path, and the transient current concentrated in the region is dispersed. This modification reduces the high current density and power dissipation at the trench corner, thereby significantly enhancing the device's resistance to SEB. Compared to the original device, the SEB threshold voltage is increased from 270V to 478V, marking a 77% improvement.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3524391</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Buried structures ; Current density ; Diffusion layers ; Dispersion hardening ; Electric fields ; Energy dissipation ; Heavy ions ; High-voltage techniques ; Linear energy transfer (LET) ; Logic gates ; MOSFET ; MOSFETs ; Power dissipation ; QVDMOSFET ; Rendering (computer graphics) ; SEB hardening ; SiC ; Silicon carbide ; Simulation ; single-event effect ; Spatial distribution ; Temperature ; Thermal conductivity ; Threshold voltage ; Transient current ; Transistors ; Two dimensional analysis ; Vertical distribution</subject><ispartof>IEEE access, 2025, Vol.13, p.5023-5031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2041-df51fda89b0ffceaba2f6a97a9f0378b7ecacca5b69a30dca15252d7e362b7963</cites><orcidid>0000-0002-5026-1431 ; 0000-0003-1127-5918 ; 0009-0008-5690-6254 ; 0000-0003-1436-3489 ; 0000-0001-5802-9488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818673$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Shi, Jin-Ke</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Fei, Xin-Xing</creatorcontrib><creatorcontrib>Sun, Biao</creatorcontrib><creatorcontrib>Song, Yan-Xing</creatorcontrib><creatorcontrib>Liu, Yu-Qian</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><title>Simulation Study on Single-Event Burnout Reliability of 900V 4H-SiC Quasi Vertical Double Diffused MOSFET</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this work, the single-event burnout (SEB) performance and reasons of the proposed 900V SiC quasi-vertical double diffusion MOSFET with deepened drain (T-QVDMOSFET) are analyzed from the spatial distribution of physical quantities such as power density, lattice temperature and total current density by 2-D numerical simulation, and a SEB-hardened structure (TB-QVDMOSFET) with buried oxygen layer (BOX) and heavily doped N-type current expansion layer (CSL) inside the device is proposed. Simulation results indicate that when heavy-ion with linear energy transfer (LET) of 0.5pC/&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu &lt;/tex-math&gt;&lt;/inline-formula&gt;m strikes the device, the primary cause of SEB in the SiC T-QVDMOSFET is the high transient current density and electric field at the trench gate corner. This phenomenon leads to increased power dissipation, resulting in excessive temperatures that ultimately cause thermal failure. The BOX and a heavily doped N-type CSL added in the SEB-hardened structure change the current flow path, and the transient current concentrated in the region is dispersed. This modification reduces the high current density and power dissipation at the trench corner, thereby significantly enhancing the device's resistance to SEB. Compared to the original device, the SEB threshold voltage is increased from 270V to 478V, marking a 77% improvement.</description><subject>Buried structures</subject><subject>Current density</subject><subject>Diffusion layers</subject><subject>Dispersion hardening</subject><subject>Electric fields</subject><subject>Energy dissipation</subject><subject>Heavy ions</subject><subject>High-voltage techniques</subject><subject>Linear energy transfer (LET)</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Power dissipation</subject><subject>QVDMOSFET</subject><subject>Rendering (computer graphics)</subject><subject>SEB hardening</subject><subject>SiC</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>single-event effect</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Threshold voltage</subject><subject>Transient current</subject><subject>Transistors</subject><subject>Two dimensional analysis</subject><subject>Vertical distribution</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKxDAULKKg6H6BPgR87ppr0zxqXS-gLFrd13CSJpKlbrQXwb83axcxLzkMM3OGM1l2SvCcEKwuLqtqUddziimfM0E5U2QvO6KkUDkTrNj_Nx9ms75f4_TKBAl5lIU6vI8tDCFuUD2MzTfaDmHz1rp88eU2A7oau00cB_Ts2gAmtGFIHI8UxivE7_I6VOhphD6gleuGYKFF13E0rUPXwfuxdw16XNY3i5eT7MBD27vZ7j_OXhNa3eUPy9v76vIhtxRzkjdeEN9AqQz23jowQH0BSoLymMnSSGfBWhCmUMBwY4EIKmgjHSuokapgx9n95NtEWOuPLrxD960jBP0LxO5NwzZo6zQRIG3JgEJjuOeqpETignLJGOGGqeR1Pnl9dPFzdP2g1zGdI8XXjIh0aMI4TSw2sWwX-75z_m8rwXpbkZ4q0tuK9K6ipDqbVME5909RkrJIAX4AR82LWg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Shi, Jin-Ke</creator><creator>Wang, Ying</creator><creator>Fei, Xin-Xing</creator><creator>Sun, Biao</creator><creator>Song, Yan-Xing</creator><creator>Liu, Yu-Qian</creator><creator>Zhang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5026-1431</orcidid><orcidid>https://orcid.org/0000-0003-1127-5918</orcidid><orcidid>https://orcid.org/0009-0008-5690-6254</orcidid><orcidid>https://orcid.org/0000-0003-1436-3489</orcidid><orcidid>https://orcid.org/0000-0001-5802-9488</orcidid></search><sort><creationdate>2025</creationdate><title>Simulation Study on Single-Event Burnout Reliability of 900V 4H-SiC Quasi Vertical Double Diffused MOSFET</title><author>Shi, Jin-Ke ; Wang, Ying ; Fei, Xin-Xing ; Sun, Biao ; Song, Yan-Xing ; Liu, Yu-Qian ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2041-df51fda89b0ffceaba2f6a97a9f0378b7ecacca5b69a30dca15252d7e362b7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Buried structures</topic><topic>Current density</topic><topic>Diffusion layers</topic><topic>Dispersion hardening</topic><topic>Electric fields</topic><topic>Energy dissipation</topic><topic>Heavy ions</topic><topic>High-voltage techniques</topic><topic>Linear energy transfer (LET)</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Power dissipation</topic><topic>QVDMOSFET</topic><topic>Rendering (computer graphics)</topic><topic>SEB hardening</topic><topic>SiC</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>single-event effect</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Threshold voltage</topic><topic>Transient current</topic><topic>Transistors</topic><topic>Two dimensional analysis</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jin-Ke</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Fei, Xin-Xing</creatorcontrib><creatorcontrib>Sun, Biao</creatorcontrib><creatorcontrib>Song, Yan-Xing</creatorcontrib><creatorcontrib>Liu, Yu-Qian</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jin-Ke</au><au>Wang, Ying</au><au>Fei, Xin-Xing</au><au>Sun, Biao</au><au>Song, Yan-Xing</au><au>Liu, Yu-Qian</au><au>Zhang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Study on Single-Event Burnout Reliability of 900V 4H-SiC Quasi Vertical Double Diffused MOSFET</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025</date><risdate>2025</risdate><volume>13</volume><spage>5023</spage><epage>5031</epage><pages>5023-5031</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this work, the single-event burnout (SEB) performance and reasons of the proposed 900V SiC quasi-vertical double diffusion MOSFET with deepened drain (T-QVDMOSFET) are analyzed from the spatial distribution of physical quantities such as power density, lattice temperature and total current density by 2-D numerical simulation, and a SEB-hardened structure (TB-QVDMOSFET) with buried oxygen layer (BOX) and heavily doped N-type current expansion layer (CSL) inside the device is proposed. Simulation results indicate that when heavy-ion with linear energy transfer (LET) of 0.5pC/&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu &lt;/tex-math&gt;&lt;/inline-formula&gt;m strikes the device, the primary cause of SEB in the SiC T-QVDMOSFET is the high transient current density and electric field at the trench gate corner. This phenomenon leads to increased power dissipation, resulting in excessive temperatures that ultimately cause thermal failure. The BOX and a heavily doped N-type CSL added in the SEB-hardened structure change the current flow path, and the transient current concentrated in the region is dispersed. This modification reduces the high current density and power dissipation at the trench corner, thereby significantly enhancing the device's resistance to SEB. Compared to the original device, the SEB threshold voltage is increased from 270V to 478V, marking a 77% improvement.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3524391</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5026-1431</orcidid><orcidid>https://orcid.org/0000-0003-1127-5918</orcidid><orcidid>https://orcid.org/0009-0008-5690-6254</orcidid><orcidid>https://orcid.org/0000-0003-1436-3489</orcidid><orcidid>https://orcid.org/0000-0001-5802-9488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025, Vol.13, p.5023-5031
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10818673
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Buried structures
Current density
Diffusion layers
Dispersion hardening
Electric fields
Energy dissipation
Heavy ions
High-voltage techniques
Linear energy transfer (LET)
Logic gates
MOSFET
MOSFETs
Power dissipation
QVDMOSFET
Rendering (computer graphics)
SEB hardening
SiC
Silicon carbide
Simulation
single-event effect
Spatial distribution
Temperature
Thermal conductivity
Threshold voltage
Transient current
Transistors
Two dimensional analysis
Vertical distribution
title Simulation Study on Single-Event Burnout Reliability of 900V 4H-SiC Quasi Vertical Double Diffused MOSFET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Study%20on%20Single-Event%20Burnout%20Reliability%20of%20900V%204H-SiC%20Quasi%20Vertical%20Double%20Diffused%20MOSFET&rft.jtitle=IEEE%20access&rft.au=Shi,%20Jin-Ke&rft.date=2025&rft.volume=13&rft.spage=5023&rft.epage=5031&rft.pages=5023-5031&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3524391&rft_dat=%3Cproquest_ieee_%3E3153911342%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153911342&rft_id=info:pmid/&rft_ieee_id=10818673&rft_doaj_id=oai_doaj_org_article_15a7c83a2adb4f498217062473314b39&rfr_iscdi=true