Quantifying the Value of Preview Information for Safety Control

Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2025, p.1-16
Hauptverfasser: Liu, Zexiang, Ozay, Necmiye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on automatic control
container_volume
creator Liu, Zexiang
Ozay, Necmiye
description Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.
doi_str_mv 10.1109/TAC.2024.3524462
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10818640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818640</ieee_id><sourcerecordid>10_1109_TAC_2024_3524462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1042-7cd91e10d4147ea7ae12e3656e86b6bfff9efd45b498ebc39a81aac394c170a53</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhBdRMFbvHjzsH0jcd7-yOUkJWgsFFavXsEne1ZU2K5tUyb83pT14mhmYmcNDyDWwDIAVt-t5mXHGZSYUl1LzE5KAUibliotTkjAGJi240efkou-_pqilhITcvexsN3g3-u6DDp9I3-1mhzQ4-hzxx-MvXXYuxK0dfOjo5OirdTiMtAzdEMPmkpw5u-nx6qgz8vZwvy4f09XTYlnOV2kDTPI0b9oCEFgrQeZoc4vAUWil0eha1865Al0rVS0Lg3UjCmvA2kllAzmzSswIO_w2MfR9RFd9R7-1cayAVXsA1QSg2gOojgCmyc1h4hHxX92A0ZKJP6neV1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying the Value of Preview Information for Safety Control</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zexiang ; Ozay, Necmiye</creator><creatorcontrib>Liu, Zexiang ; Ozay, Necmiye</creatorcontrib><description>Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3524462</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constrained control ; Dynamical systems ; Feedforward systems ; Heuristic algorithms ; Linear systems ; Model predictive control ; Prediction ; Prediction algorithms ; Predictive control ; Robust controlled invariant sets ; Safety ; Trajectory ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2025, p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8020-1619 ; 0000-0002-5552-4392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10818640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zexiang</creatorcontrib><creatorcontrib>Ozay, Necmiye</creatorcontrib><title>Quantifying the Value of Preview Information for Safety Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.</description><subject>Constrained control</subject><subject>Dynamical systems</subject><subject>Feedforward systems</subject><subject>Heuristic algorithms</subject><subject>Linear systems</subject><subject>Model predictive control</subject><subject>Prediction</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Robust controlled invariant sets</subject><subject>Safety</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AYhBdRMFbvHjzsH0jcd7-yOUkJWgsFFavXsEne1ZU2K5tUyb83pT14mhmYmcNDyDWwDIAVt-t5mXHGZSYUl1LzE5KAUibliotTkjAGJi240efkou-_pqilhITcvexsN3g3-u6DDp9I3-1mhzQ4-hzxx-MvXXYuxK0dfOjo5OirdTiMtAzdEMPmkpw5u-nx6qgz8vZwvy4f09XTYlnOV2kDTPI0b9oCEFgrQeZoc4vAUWil0eha1865Al0rVS0Lg3UjCmvA2kllAzmzSswIO_w2MfR9RFd9R7-1cayAVXsA1QSg2gOojgCmyc1h4hHxX92A0ZKJP6neV1o</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Liu, Zexiang</creator><creator>Ozay, Necmiye</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8020-1619</orcidid><orcidid>https://orcid.org/0000-0002-5552-4392</orcidid></search><sort><creationdate>2025</creationdate><title>Quantifying the Value of Preview Information for Safety Control</title><author>Liu, Zexiang ; Ozay, Necmiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1042-7cd91e10d4147ea7ae12e3656e86b6bfff9efd45b498ebc39a81aac394c170a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Constrained control</topic><topic>Dynamical systems</topic><topic>Feedforward systems</topic><topic>Heuristic algorithms</topic><topic>Linear systems</topic><topic>Model predictive control</topic><topic>Prediction</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Robust controlled invariant sets</topic><topic>Safety</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zexiang</creatorcontrib><creatorcontrib>Ozay, Necmiye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zexiang</au><au>Ozay, Necmiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Value of Preview Information for Safety Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2024.3524462</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8020-1619</orcidid><orcidid>https://orcid.org/0000-0002-5552-4392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2025, p.1-16
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_10818640
source IEEE Electronic Library (IEL)
subjects Constrained control
Dynamical systems
Feedforward systems
Heuristic algorithms
Linear systems
Model predictive control
Prediction
Prediction algorithms
Predictive control
Robust controlled invariant sets
Safety
Trajectory
Uncertainty
Vectors
title Quantifying the Value of Preview Information for Safety Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Value%20of%20Preview%20Information%20for%20Safety%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Liu,%20Zexiang&rft.date=2025&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3524462&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2024_3524462%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818640&rfr_iscdi=true