Quantifying the Value of Preview Information for Safety Control
Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2025, p.1-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on automatic control |
container_volume | |
creator | Liu, Zexiang Ozay, Necmiye |
description | Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains. |
doi_str_mv | 10.1109/TAC.2024.3524462 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10818640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818640</ieee_id><sourcerecordid>10_1109_TAC_2024_3524462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1042-7cd91e10d4147ea7ae12e3656e86b6bfff9efd45b498ebc39a81aac394c170a53</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhBdRMFbvHjzsH0jcd7-yOUkJWgsFFavXsEne1ZU2K5tUyb83pT14mhmYmcNDyDWwDIAVt-t5mXHGZSYUl1LzE5KAUibliotTkjAGJi240efkou-_pqilhITcvexsN3g3-u6DDp9I3-1mhzQ4-hzxx-MvXXYuxK0dfOjo5OirdTiMtAzdEMPmkpw5u-nx6qgz8vZwvy4f09XTYlnOV2kDTPI0b9oCEFgrQeZoc4vAUWil0eha1865Al0rVS0Lg3UjCmvA2kllAzmzSswIO_w2MfR9RFd9R7-1cayAVXsA1QSg2gOojgCmyc1h4hHxX92A0ZKJP6neV1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying the Value of Preview Information for Safety Control</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zexiang ; Ozay, Necmiye</creator><creatorcontrib>Liu, Zexiang ; Ozay, Necmiye</creatorcontrib><description>Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3524462</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constrained control ; Dynamical systems ; Feedforward systems ; Heuristic algorithms ; Linear systems ; Model predictive control ; Prediction ; Prediction algorithms ; Predictive control ; Robust controlled invariant sets ; Safety ; Trajectory ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2025, p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8020-1619 ; 0000-0002-5552-4392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10818640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zexiang</creatorcontrib><creatorcontrib>Ozay, Necmiye</creatorcontrib><title>Quantifying the Value of Preview Information for Safety Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.</description><subject>Constrained control</subject><subject>Dynamical systems</subject><subject>Feedforward systems</subject><subject>Heuristic algorithms</subject><subject>Linear systems</subject><subject>Model predictive control</subject><subject>Prediction</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Robust controlled invariant sets</subject><subject>Safety</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AYhBdRMFbvHjzsH0jcd7-yOUkJWgsFFavXsEne1ZU2K5tUyb83pT14mhmYmcNDyDWwDIAVt-t5mXHGZSYUl1LzE5KAUibliotTkjAGJi240efkou-_pqilhITcvexsN3g3-u6DDp9I3-1mhzQ4-hzxx-MvXXYuxK0dfOjo5OirdTiMtAzdEMPmkpw5u-nx6qgz8vZwvy4f09XTYlnOV2kDTPI0b9oCEFgrQeZoc4vAUWil0eha1865Al0rVS0Lg3UjCmvA2kllAzmzSswIO_w2MfR9RFd9R7-1cayAVXsA1QSg2gOojgCmyc1h4hHxX92A0ZKJP6neV1o</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Liu, Zexiang</creator><creator>Ozay, Necmiye</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8020-1619</orcidid><orcidid>https://orcid.org/0000-0002-5552-4392</orcidid></search><sort><creationdate>2025</creationdate><title>Quantifying the Value of Preview Information for Safety Control</title><author>Liu, Zexiang ; Ozay, Necmiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1042-7cd91e10d4147ea7ae12e3656e86b6bfff9efd45b498ebc39a81aac394c170a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Constrained control</topic><topic>Dynamical systems</topic><topic>Feedforward systems</topic><topic>Heuristic algorithms</topic><topic>Linear systems</topic><topic>Model predictive control</topic><topic>Prediction</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Robust controlled invariant sets</topic><topic>Safety</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zexiang</creatorcontrib><creatorcontrib>Ozay, Necmiye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zexiang</au><au>Ozay, Necmiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Value of Preview Information for Safety Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Safety-critical systems, such as autonomous vehicles, often incorporate perception modules that can anticipate upcoming disturbances to system dynamics, expecting that such preview information can improve the performance and safety of the system in complex and uncertain environments. However, there is a lack of formal analysis of the impact of preview information on safety. In this work, we introduce a notion of safety regret, a properly defined difference between the maximal invariant set of a system with finite preview and that of a system with infinite preview, and show that for linear systems this quantity corresponding to finite-step preview decays exponentially with the preview horizon. Furthermore, algorithms are developed to numerically evaluate the safety regret of a system for different preview horizons. Finally, we demonstrate the established theory and algorithms via multiple examples from different application domains.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2024.3524462</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8020-1619</orcidid><orcidid>https://orcid.org/0000-0002-5552-4392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2025, p.1-16 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_10818640 |
source | IEEE Electronic Library (IEL) |
subjects | Constrained control Dynamical systems Feedforward systems Heuristic algorithms Linear systems Model predictive control Prediction Prediction algorithms Predictive control Robust controlled invariant sets Safety Trajectory Uncertainty Vectors |
title | Quantifying the Value of Preview Information for Safety Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Value%20of%20Preview%20Information%20for%20Safety%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Liu,%20Zexiang&rft.date=2025&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3524462&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2024_3524462%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818640&rfr_iscdi=true |