CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation

Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-12, p.1-1
Hauptverfasser: Wu, Lanhu, Zhang, Miao, Piao, Yongri, Yao, Zhenyan, Sun, Weibing, Tian, Feng, Lu, Huchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on circuits and systems for video technology
container_volume
creator Wu, Lanhu
Zhang, Miao
Piao, Yongri
Yao, Zhenyan
Sun, Weibing
Tian, Feng
Lu, Huchuan
description Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.
doi_str_mv 10.1109/TCSVT.2024.3523316
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10816601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10816601</ieee_id><sourcerecordid>10_1109_TCSVT_2024_3523316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641-190df46b32532150134b6ec078ea20b19724647a4b6da72d037495e6285a89543</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsFZfQLzYF0id2VM2lxLUFmoLNngbNsmkrOQgmyL49m5tL7yaYfi_4edj7B5hgQjZY5HvPoqFAKEWUgsp0VywGWptEyFAX8YdNCZWoL5mN9P0CYDKqnTGtvlmkxTBDVM7hp4Cf6f64FtPDc_HrnPVGNzBfxNfkwuDH_Y85vgbNb52HV_1bk98R_uehkPMjcMtu2pdN9Hdec5Z8fJc5MtkvX1d5U_rpDYKE8ygaZWppNAydgKUqjJUQ2rJCagwS4UyKnXx2rhUNCBTlWkywmpnM63knInT2zqM0xSoLb-C7134KRHKo5Hyz0h5NFKejUTo4QR5IvoHWDQmVvgFfvFcBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Lanhu ; Zhang, Miao ; Piao, Yongri ; Yao, Zhenyan ; Sun, Weibing ; Tian, Feng ; Lu, Huchuan</creator><creatorcontrib>Wu, Lanhu ; Zhang, Miao ; Piao, Yongri ; Yao, Zhenyan ; Sun, Weibing ; Tian, Feng ; Lu, Huchuan</creatorcontrib><description>Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3523316</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; CNN ; collaborative learning ; Convolutional neural networks ; Decoding ; Feature extraction ; Federated learning ; Image segmentation ; Knowledge transfer ; Location awareness ; Medical image segmentation ; Semantics ; Transformer ; Transformers</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0860-252X ; 0000-0002-6668-9758 ; 0000-0002-7972-7047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10816601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10816601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Lanhu</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Piao, Yongri</creatorcontrib><creatorcontrib>Yao, Zhenyan</creatorcontrib><creatorcontrib>Sun, Weibing</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><title>CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.</description><subject>Accuracy</subject><subject>CNN</subject><subject>collaborative learning</subject><subject>Convolutional neural networks</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>Federated learning</subject><subject>Image segmentation</subject><subject>Knowledge transfer</subject><subject>Location awareness</subject><subject>Medical image segmentation</subject><subject>Semantics</subject><subject>Transformer</subject><subject>Transformers</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtKw0AQhhdRsFZfQLzYF0id2VM2lxLUFmoLNngbNsmkrOQgmyL49m5tL7yaYfi_4edj7B5hgQjZY5HvPoqFAKEWUgsp0VywGWptEyFAX8YdNCZWoL5mN9P0CYDKqnTGtvlmkxTBDVM7hp4Cf6f64FtPDc_HrnPVGNzBfxNfkwuDH_Y85vgbNb52HV_1bk98R_uehkPMjcMtu2pdN9Hdec5Z8fJc5MtkvX1d5U_rpDYKE8ygaZWppNAydgKUqjJUQ2rJCagwS4UyKnXx2rhUNCBTlWkywmpnM63knInT2zqM0xSoLb-C7134KRHKo5Hyz0h5NFKejUTo4QR5IvoHWDQmVvgFfvFcBg</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Wu, Lanhu</creator><creator>Zhang, Miao</creator><creator>Piao, Yongri</creator><creator>Yao, Zhenyan</creator><creator>Sun, Weibing</creator><creator>Tian, Feng</creator><creator>Lu, Huchuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0860-252X</orcidid><orcidid>https://orcid.org/0000-0002-6668-9758</orcidid><orcidid>https://orcid.org/0000-0002-7972-7047</orcidid></search><sort><creationdate>20241226</creationdate><title>CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation</title><author>Wu, Lanhu ; Zhang, Miao ; Piao, Yongri ; Yao, Zhenyan ; Sun, Weibing ; Tian, Feng ; Lu, Huchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641-190df46b32532150134b6ec078ea20b19724647a4b6da72d037495e6285a89543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>CNN</topic><topic>collaborative learning</topic><topic>Convolutional neural networks</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>Federated learning</topic><topic>Image segmentation</topic><topic>Knowledge transfer</topic><topic>Location awareness</topic><topic>Medical image segmentation</topic><topic>Semantics</topic><topic>Transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lanhu</creatorcontrib><creatorcontrib>Zhang, Miao</creatorcontrib><creatorcontrib>Piao, Yongri</creatorcontrib><creatorcontrib>Yao, Zhenyan</creatorcontrib><creatorcontrib>Sun, Weibing</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Lu, Huchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Lanhu</au><au>Zhang, Miao</au><au>Piao, Yongri</au><au>Yao, Zhenyan</au><au>Sun, Weibing</au><au>Tian, Feng</au><au>Lu, Huchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-12-26</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.</abstract><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3523316</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0860-252X</orcidid><orcidid>https://orcid.org/0000-0002-6668-9758</orcidid><orcidid>https://orcid.org/0000-0002-7972-7047</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-12, p.1-1
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_10816601
source IEEE Electronic Library (IEL)
subjects Accuracy
CNN
collaborative learning
Convolutional neural networks
Decoding
Feature extraction
Federated learning
Image segmentation
Knowledge transfer
Location awareness
Medical image segmentation
Semantics
Transformer
Transformers
title CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-Transformer%20Rectified%20Collaborative%20Learning%20for%20Medical%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Wu,%20Lanhu&rft.date=2024-12-26&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3523316&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSVT_2024_3523316%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10816601&rfr_iscdi=true