Multi-Head Encoding for Extreme Label Classification

The number of categories of instances in the real world is normally huge, and each instance may contain multiple labels. To distinguish these massive labels utilizing machine learning, eXtreme Label Classification (XLC) has been established. However, as the number of categories increases, the number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2025, p.1-14
Hauptverfasser: Liang, Daojun, Zhang, Haixia, Yuan, Dongfeng, Zhang, Minggao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume
creator Liang, Daojun
Zhang, Haixia
Yuan, Dongfeng
Zhang, Minggao
description The number of categories of instances in the real world is normally huge, and each instance may contain multiple labels. To distinguish these massive labels utilizing machine learning, eXtreme Label Classification (XLC) has been established. However, as the number of categories increases, the number of parameters and nonlinear operations in the classifier also rises. This results in a Classifier Computational Overload Problem (CCOP). To address this, we propose a Multi-Head Encoding (MHE) mechanism, which replaces the vanilla classifier with a multi-head classifier. During the training process, MHE decomposes extreme labels into the product of multiple short local labels, with each head trained on these local labels. During testing, the predicted labels can be directly calculated from the local predictions of each head. This reduces the computational load geometrically. Then, according to the characteristics of different XLC tasks, e.g., single-label, multi-label, and model pretraining tasks, three MHE-based implementations, i.e., Multi-Head Product, Multi-Head Cascade, and Multi-Head Sampling, are proposed to more effectively cope with CCOP. Moreover, we theoretically demonstrate that MHE can achieve performance approximately equivalent to that of the vanilla classifier by generalizing the low-rank approximation problem from Frobenius-norm to Cross-Entropy. Experimental results show that the proposed methods achieve state-of-the-art performance while significantly streamlining the training and inference processes of XLC tasks. The source code has been made public at https://github.com/Anoise/MHE .
doi_str_mv 10.1109/TPAMI.2024.3522298
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10816186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10816186</ieee_id><sourcerecordid>10_1109_TPAMI_2024_3522298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646-a569d8d5bebe267b2453adc0fac7e6fc3b54abd0c9c4a3be0de01beb2d0c1e013</originalsourceid><addsrcrecordid>eNpNj81Kw0AUhQdRsFZfQFzkBVLv3JlMJ8sSoi2k6CL7MD83MpImkomgb29qu-jqHi7nO_Ax9shhxTnkz_X7Zr9bIaBciQwRc33FFsgVpDnmeM0WwBWmWqO-ZXcxfgJwmYFYMLn_7qaQbsn4pOzd4EP_kbTDmJQ_00gHSipjqUuKzsQY2uDMFIb-nt20pov0cL5LVr-UdbFNq7fXXbGpUqekSk2mcq99ZskSqrVFmQnjHbTGrUm1TthMGuvB5U4aYQk8AZ_LOL_4HMWS4WnWjUOMI7XN1xgOZvxtODRH7eZfuzlqN2ftGXo6QYGILgDNFddK_AF071To</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Head Encoding for Extreme Label Classification</title><source>IEL</source><creator>Liang, Daojun ; Zhang, Haixia ; Yuan, Dongfeng ; Zhang, Minggao</creator><creatorcontrib>Liang, Daojun ; Zhang, Haixia ; Yuan, Dongfeng ; Zhang, Minggao</creatorcontrib><description>The number of categories of instances in the real world is normally huge, and each instance may contain multiple labels. To distinguish these massive labels utilizing machine learning, eXtreme Label Classification (XLC) has been established. However, as the number of categories increases, the number of parameters and nonlinear operations in the classifier also rises. This results in a Classifier Computational Overload Problem (CCOP). To address this, we propose a Multi-Head Encoding (MHE) mechanism, which replaces the vanilla classifier with a multi-head classifier. During the training process, MHE decomposes extreme labels into the product of multiple short local labels, with each head trained on these local labels. During testing, the predicted labels can be directly calculated from the local predictions of each head. This reduces the computational load geometrically. Then, according to the characteristics of different XLC tasks, e.g., single-label, multi-label, and model pretraining tasks, three MHE-based implementations, i.e., Multi-Head Product, Multi-Head Cascade, and Multi-Head Sampling, are proposed to more effectively cope with CCOP. Moreover, we theoretically demonstrate that MHE can achieve performance approximately equivalent to that of the vanilla classifier by generalizing the low-rank approximation problem from Frobenius-norm to Cross-Entropy. Experimental results show that the proposed methods achieve state-of-the-art performance while significantly streamlining the training and inference processes of XLC tasks. The source code has been made public at https://github.com/Anoise/MHE .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3522298</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Encoding ; extreme label classification ; EXtreme Multi-label Classification ; Face recognition ; Magnetic heads ; multi-head encoding ; Semantics ; Tensors ; Testing ; Training ; Vectors ; Vocabulary</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2025, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9398-9238 ; 0000-0001-5081-7287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10816186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10816186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Daojun</creatorcontrib><creatorcontrib>Zhang, Haixia</creatorcontrib><creatorcontrib>Yuan, Dongfeng</creatorcontrib><creatorcontrib>Zhang, Minggao</creatorcontrib><title>Multi-Head Encoding for Extreme Label Classification</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>The number of categories of instances in the real world is normally huge, and each instance may contain multiple labels. To distinguish these massive labels utilizing machine learning, eXtreme Label Classification (XLC) has been established. However, as the number of categories increases, the number of parameters and nonlinear operations in the classifier also rises. This results in a Classifier Computational Overload Problem (CCOP). To address this, we propose a Multi-Head Encoding (MHE) mechanism, which replaces the vanilla classifier with a multi-head classifier. During the training process, MHE decomposes extreme labels into the product of multiple short local labels, with each head trained on these local labels. During testing, the predicted labels can be directly calculated from the local predictions of each head. This reduces the computational load geometrically. Then, according to the characteristics of different XLC tasks, e.g., single-label, multi-label, and model pretraining tasks, three MHE-based implementations, i.e., Multi-Head Product, Multi-Head Cascade, and Multi-Head Sampling, are proposed to more effectively cope with CCOP. Moreover, we theoretically demonstrate that MHE can achieve performance approximately equivalent to that of the vanilla classifier by generalizing the low-rank approximation problem from Frobenius-norm to Cross-Entropy. Experimental results show that the proposed methods achieve state-of-the-art performance while significantly streamlining the training and inference processes of XLC tasks. The source code has been made public at https://github.com/Anoise/MHE .</description><subject>Computational modeling</subject><subject>Encoding</subject><subject>extreme label classification</subject><subject>EXtreme Multi-label Classification</subject><subject>Face recognition</subject><subject>Magnetic heads</subject><subject>multi-head encoding</subject><subject>Semantics</subject><subject>Tensors</subject><subject>Testing</subject><subject>Training</subject><subject>Vectors</subject><subject>Vocabulary</subject><issn>0162-8828</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj81Kw0AUhQdRsFZfQFzkBVLv3JlMJ8sSoi2k6CL7MD83MpImkomgb29qu-jqHi7nO_Ax9shhxTnkz_X7Zr9bIaBciQwRc33FFsgVpDnmeM0WwBWmWqO-ZXcxfgJwmYFYMLn_7qaQbsn4pOzd4EP_kbTDmJQ_00gHSipjqUuKzsQY2uDMFIb-nt20pov0cL5LVr-UdbFNq7fXXbGpUqekSk2mcq99ZskSqrVFmQnjHbTGrUm1TthMGuvB5U4aYQk8AZ_LOL_4HMWS4WnWjUOMI7XN1xgOZvxtODRH7eZfuzlqN2ftGXo6QYGILgDNFddK_AF071To</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Liang, Daojun</creator><creator>Zhang, Haixia</creator><creator>Yuan, Dongfeng</creator><creator>Zhang, Minggao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9398-9238</orcidid><orcidid>https://orcid.org/0000-0001-5081-7287</orcidid></search><sort><creationdate>2025</creationdate><title>Multi-Head Encoding for Extreme Label Classification</title><author>Liang, Daojun ; Zhang, Haixia ; Yuan, Dongfeng ; Zhang, Minggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646-a569d8d5bebe267b2453adc0fac7e6fc3b54abd0c9c4a3be0de01beb2d0c1e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computational modeling</topic><topic>Encoding</topic><topic>extreme label classification</topic><topic>EXtreme Multi-label Classification</topic><topic>Face recognition</topic><topic>Magnetic heads</topic><topic>multi-head encoding</topic><topic>Semantics</topic><topic>Tensors</topic><topic>Testing</topic><topic>Training</topic><topic>Vectors</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Daojun</creatorcontrib><creatorcontrib>Zhang, Haixia</creatorcontrib><creatorcontrib>Yuan, Dongfeng</creatorcontrib><creatorcontrib>Zhang, Minggao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Daojun</au><au>Zhang, Haixia</au><au>Yuan, Dongfeng</au><au>Zhang, Minggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Head Encoding for Extreme Label Classification</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>The number of categories of instances in the real world is normally huge, and each instance may contain multiple labels. To distinguish these massive labels utilizing machine learning, eXtreme Label Classification (XLC) has been established. However, as the number of categories increases, the number of parameters and nonlinear operations in the classifier also rises. This results in a Classifier Computational Overload Problem (CCOP). To address this, we propose a Multi-Head Encoding (MHE) mechanism, which replaces the vanilla classifier with a multi-head classifier. During the training process, MHE decomposes extreme labels into the product of multiple short local labels, with each head trained on these local labels. During testing, the predicted labels can be directly calculated from the local predictions of each head. This reduces the computational load geometrically. Then, according to the characteristics of different XLC tasks, e.g., single-label, multi-label, and model pretraining tasks, three MHE-based implementations, i.e., Multi-Head Product, Multi-Head Cascade, and Multi-Head Sampling, are proposed to more effectively cope with CCOP. Moreover, we theoretically demonstrate that MHE can achieve performance approximately equivalent to that of the vanilla classifier by generalizing the low-rank approximation problem from Frobenius-norm to Cross-Entropy. Experimental results show that the proposed methods achieve state-of-the-art performance while significantly streamlining the training and inference processes of XLC tasks. The source code has been made public at https://github.com/Anoise/MHE .</abstract><pub>IEEE</pub><doi>10.1109/TPAMI.2024.3522298</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9398-9238</orcidid><orcidid>https://orcid.org/0000-0001-5081-7287</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2025, p.1-14
issn 0162-8828
2160-9292
language eng
recordid cdi_ieee_primary_10816186
source IEL
subjects Computational modeling
Encoding
extreme label classification
EXtreme Multi-label Classification
Face recognition
Magnetic heads
multi-head encoding
Semantics
Tensors
Testing
Training
Vectors
Vocabulary
title Multi-Head Encoding for Extreme Label Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Head%20Encoding%20for%20Extreme%20Label%20Classification&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liang,%20Daojun&rft.date=2025&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3522298&rft_dat=%3Ccrossref_RIE%3E10_1109_TPAMI_2024_3522298%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10816186&rfr_iscdi=true