Knowledge-Inspired Data-Aided Robust Power Flow in Distribution Networks With ZIP Loads and High DER Penetration

Characterized by increasing penetration of distributed energy resources, active distribution networks necessitate developing uncertainty-adaptive power flow (PF) algorithms to cover broad operating conditions. Despite the success of data-driven methods in improving such adaptivity, the efficacy of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2025, p.1-10
Hauptverfasser: Chung, Sungjoo, Zhang, Ying, Zhang, Yuanshuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on industry applications
container_volume
creator Chung, Sungjoo
Zhang, Ying
Zhang, Yuanshuo
description Characterized by increasing penetration of distributed energy resources, active distribution networks necessitate developing uncertainty-adaptive power flow (PF) algorithms to cover broad operating conditions. Despite the success of data-driven methods in improving such adaptivity, the efficacy of these methods relies heavily on large, precise, and outlier-free datasets, which limits their materialization in practical grids. To address these dual issues, this paper proposes a knowledge-inspired data-aided robust PF algorithm in unbalanced distribution systems with ZIP load models and high penetration of distributed energy resources. The proposed method first uses Taylor expansion to derive an explicitly analytical linear solution for the PF calculation. A data-driven support vector regression-based method is further proposed to mitigate the approximation loss of the linearized PF model, which might surge in widening voltage variations. Inspired by physical knowledge of distribution system operation, the proposed method can adapt to a wide range of operating conditions without retraining and thus can be applied to passive/active distribution networks. Case studies in the IEEE 13- and 123- bus unbalanced feeders illustrate that the proposed algorithm exhibits superior computation efficiency and guaranteed accuracy, under variable penetration levels and lightweight datasets.
doi_str_mv 10.1109/TIA.2024.3522496
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10816174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10816174</ieee_id><sourcerecordid>10_1109_TIA_2024_3522496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-c19043cfe92ac11eb108949e4c66c1b58d7a32dd322702f604aa1e01d5ef9ffe3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzD4D6T42U5Sj1U_aEQFVVUJiSVy4pfWUOLKdhXx72nVDkz3Dvfc4RDyCGwAwNTzuhgNOONyIFLOpcquSA-UUIkSWX5NeowpkSil5C25C-GLMZApyB7Zv7au26HZYFK0YW89GjrRUScja4515apDiHTpOvR0tnMdtS2d2BC9rQ7Rupa-Yeyc_w70w8Yt_SyWdOG0CVS3hs7tZksn0xVdYovR6xNwT24avQv4cMk-Wc-m6_E8Wby_FOPRIqkzLpMaFJOiblBxXQNgBWyopEJZZ1kNVTo0uRbcGMF5zniTMak1IAOTYqOaBkWfsPNt7V0IHpty7-2P9r8lsPIkrDwKK0_CyouwI_J0Riwi_psPIYNcij_PqGev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Knowledge-Inspired Data-Aided Robust Power Flow in Distribution Networks With ZIP Loads and High DER Penetration</title><source>IEEE Electronic Library (IEL)</source><creator>Chung, Sungjoo ; Zhang, Ying ; Zhang, Yuanshuo</creator><creatorcontrib>Chung, Sungjoo ; Zhang, Ying ; Zhang, Yuanshuo</creatorcontrib><description>Characterized by increasing penetration of distributed energy resources, active distribution networks necessitate developing uncertainty-adaptive power flow (PF) algorithms to cover broad operating conditions. Despite the success of data-driven methods in improving such adaptivity, the efficacy of these methods relies heavily on large, precise, and outlier-free datasets, which limits their materialization in practical grids. To address these dual issues, this paper proposes a knowledge-inspired data-aided robust PF algorithm in unbalanced distribution systems with ZIP load models and high penetration of distributed energy resources. The proposed method first uses Taylor expansion to derive an explicitly analytical linear solution for the PF calculation. A data-driven support vector regression-based method is further proposed to mitigate the approximation loss of the linearized PF model, which might surge in widening voltage variations. Inspired by physical knowledge of distribution system operation, the proposed method can adapt to a wide range of operating conditions without retraining and thus can be applied to passive/active distribution networks. Case studies in the IEEE 13- and 123- bus unbalanced feeders illustrate that the proposed algorithm exhibits superior computation efficiency and guaranteed accuracy, under variable penetration levels and lightweight datasets.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3522496</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Active distribution networks ; Adaptation models ; Data models ; distributed energy resources ; Distributed power generation ; Distribution networks ; Load flow ; Load modeling ; outliers ; physics-informed machine learning ; power flow ; Robustness ; Taylor series ; Voltage ; ZIP loads</subject><ispartof>IEEE transactions on industry applications, 2025, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4777-3433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10816174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10816174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chung, Sungjoo</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhang, Yuanshuo</creatorcontrib><title>Knowledge-Inspired Data-Aided Robust Power Flow in Distribution Networks With ZIP Loads and High DER Penetration</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Characterized by increasing penetration of distributed energy resources, active distribution networks necessitate developing uncertainty-adaptive power flow (PF) algorithms to cover broad operating conditions. Despite the success of data-driven methods in improving such adaptivity, the efficacy of these methods relies heavily on large, precise, and outlier-free datasets, which limits their materialization in practical grids. To address these dual issues, this paper proposes a knowledge-inspired data-aided robust PF algorithm in unbalanced distribution systems with ZIP load models and high penetration of distributed energy resources. The proposed method first uses Taylor expansion to derive an explicitly analytical linear solution for the PF calculation. A data-driven support vector regression-based method is further proposed to mitigate the approximation loss of the linearized PF model, which might surge in widening voltage variations. Inspired by physical knowledge of distribution system operation, the proposed method can adapt to a wide range of operating conditions without retraining and thus can be applied to passive/active distribution networks. Case studies in the IEEE 13- and 123- bus unbalanced feeders illustrate that the proposed algorithm exhibits superior computation efficiency and guaranteed accuracy, under variable penetration levels and lightweight datasets.</description><subject>Accuracy</subject><subject>Active distribution networks</subject><subject>Adaptation models</subject><subject>Data models</subject><subject>distributed energy resources</subject><subject>Distributed power generation</subject><subject>Distribution networks</subject><subject>Load flow</subject><subject>Load modeling</subject><subject>outliers</subject><subject>physics-informed machine learning</subject><subject>power flow</subject><subject>Robustness</subject><subject>Taylor series</subject><subject>Voltage</subject><subject>ZIP loads</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzD4D6T42U5Sj1U_aEQFVVUJiSVy4pfWUOLKdhXx72nVDkz3Dvfc4RDyCGwAwNTzuhgNOONyIFLOpcquSA-UUIkSWX5NeowpkSil5C25C-GLMZApyB7Zv7au26HZYFK0YW89GjrRUScja4515apDiHTpOvR0tnMdtS2d2BC9rQ7Rupa-Yeyc_w70w8Yt_SyWdOG0CVS3hs7tZksn0xVdYovR6xNwT24avQv4cMk-Wc-m6_E8Wby_FOPRIqkzLpMaFJOiblBxXQNgBWyopEJZZ1kNVTo0uRbcGMF5zniTMak1IAOTYqOaBkWfsPNt7V0IHpty7-2P9r8lsPIkrDwKK0_CyouwI_J0Riwi_psPIYNcij_PqGev</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Chung, Sungjoo</creator><creator>Zhang, Ying</creator><creator>Zhang, Yuanshuo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4777-3433</orcidid></search><sort><creationdate>2025</creationdate><title>Knowledge-Inspired Data-Aided Robust Power Flow in Distribution Networks With ZIP Loads and High DER Penetration</title><author>Chung, Sungjoo ; Zhang, Ying ; Zhang, Yuanshuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-c19043cfe92ac11eb108949e4c66c1b58d7a32dd322702f604aa1e01d5ef9ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Active distribution networks</topic><topic>Adaptation models</topic><topic>Data models</topic><topic>distributed energy resources</topic><topic>Distributed power generation</topic><topic>Distribution networks</topic><topic>Load flow</topic><topic>Load modeling</topic><topic>outliers</topic><topic>physics-informed machine learning</topic><topic>power flow</topic><topic>Robustness</topic><topic>Taylor series</topic><topic>Voltage</topic><topic>ZIP loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Sungjoo</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhang, Yuanshuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chung, Sungjoo</au><au>Zhang, Ying</au><au>Zhang, Yuanshuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-Inspired Data-Aided Robust Power Flow in Distribution Networks With ZIP Loads and High DER Penetration</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Characterized by increasing penetration of distributed energy resources, active distribution networks necessitate developing uncertainty-adaptive power flow (PF) algorithms to cover broad operating conditions. Despite the success of data-driven methods in improving such adaptivity, the efficacy of these methods relies heavily on large, precise, and outlier-free datasets, which limits their materialization in practical grids. To address these dual issues, this paper proposes a knowledge-inspired data-aided robust PF algorithm in unbalanced distribution systems with ZIP load models and high penetration of distributed energy resources. The proposed method first uses Taylor expansion to derive an explicitly analytical linear solution for the PF calculation. A data-driven support vector regression-based method is further proposed to mitigate the approximation loss of the linearized PF model, which might surge in widening voltage variations. Inspired by physical knowledge of distribution system operation, the proposed method can adapt to a wide range of operating conditions without retraining and thus can be applied to passive/active distribution networks. Case studies in the IEEE 13- and 123- bus unbalanced feeders illustrate that the proposed algorithm exhibits superior computation efficiency and guaranteed accuracy, under variable penetration levels and lightweight datasets.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2024.3522496</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4777-3433</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2025, p.1-10
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_10816174
source IEEE Electronic Library (IEL)
subjects Accuracy
Active distribution networks
Adaptation models
Data models
distributed energy resources
Distributed power generation
Distribution networks
Load flow
Load modeling
outliers
physics-informed machine learning
power flow
Robustness
Taylor series
Voltage
ZIP loads
title Knowledge-Inspired Data-Aided Robust Power Flow in Distribution Networks With ZIP Loads and High DER Penetration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-Inspired%20Data-Aided%20Robust%20Power%20Flow%20in%20Distribution%20Networks%20With%20ZIP%20Loads%20and%20High%20DER%20Penetration&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Chung,%20Sungjoo&rft.date=2025&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3522496&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2024_3522496%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10816174&rfr_iscdi=true