Training-free image style alignment for domain shift on handheld ultrasound devices
Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when dir...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2025, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | |
creator | Zeng, Hongye Zou, Ke Chen, Zhihao Gao, Yuchong Chen, Hongbo Zhang, Haibin Zhou, Kang Wang, Meng Jiang, Chang Goh, Rick Siow Mong Liu, Yong Zhu, Chengcheng Zheng, Rui Fu, Huazhu |
description | Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA. |
doi_str_mv | 10.1109/TMI.2024.3522071 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10813622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10813622</ieee_id><sourcerecordid>10_1109_TMI_2024_3522071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622-23c3c052292eaddd49a9bb89175f9d61edd5693c354c6bb0b13820c86ba2d3c43</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqWwMzD4BVKu7TiJR1TxU6mIgQxskWPfJEapg-wUqW-Pq3Zgusv5ro4OIfcMVoyBeqzfNysOPF8JyTmU7IIsmJRVxmX-dUkWwMsqAyj4NbmJ8RuA5RLUgnzWQTvvfJ91AZG6ne6RxvkwItWj6_0O_Uy7KVA77RJI4-C6mU6eDtrbAUdL9-McdJz23lKLv85gvCVXnR4j3p3vktQvz_X6Ldt-vG7WT9vMFJxnXBhhIMkqjtpamyut2rZSrJSdsgVDa2WhEiRzU7QttExUHExVtJpbYXKxJHB6a8IUY8Cu-QnJPxwaBs2xSZOaNMcmzblJmjycJg4R_-EVE0lJ_AEY716X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Training-free image style alignment for domain shift on handheld ultrasound devices</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Hongye ; Zou, Ke ; Chen, Zhihao ; Gao, Yuchong ; Chen, Hongbo ; Zhang, Haibin ; Zhou, Kang ; Wang, Meng ; Jiang, Chang ; Goh, Rick Siow Mong ; Liu, Yong ; Zhu, Chengcheng ; Zheng, Rui ; Fu, Huazhu</creator><creatorcontrib>Zeng, Hongye ; Zou, Ke ; Chen, Zhihao ; Gao, Yuchong ; Chen, Hongbo ; Zhang, Haibin ; Zhou, Kang ; Wang, Meng ; Jiang, Chang ; Goh, Rick Siow Mong ; Liu, Yong ; Zhu, Chengcheng ; Zheng, Rui ; Fu, Huazhu</creatorcontrib><description>Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3522071</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Annotations ; Computational modeling ; Data models ; Diffusion models ; handheld ultrasound device ; Measurement uncertainty ; Predictive models ; test-time domain adaptation ; Training-free alignment ; Ultrasonic imaging ; ultrasound images ; Uncertainty</subject><ispartof>IEEE transactions on medical imaging, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8789-4243 ; 0000-0003-0391-2454 ; 0000-0001-9116-1595 ; 0000-0002-7468-3372 ; 0009-0001-2585-9319 ; 0000-0002-9702-5524 ; 0000-0003-4162-0073 ; 0000-0001-8962-559X ; 0000-0002-2025-9859 ; 0000-0003-1686-9854 ; 0000-0001-7882-1747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10813622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10813622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Hongye</creatorcontrib><creatorcontrib>Zou, Ke</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Gao, Yuchong</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Jiang, Chang</creatorcontrib><creatorcontrib>Goh, Rick Siow Mong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Chengcheng</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><title>Training-free image style alignment for domain shift on handheld ultrasound devices</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.</description><subject>Adaptation models</subject><subject>Annotations</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Diffusion models</subject><subject>handheld ultrasound device</subject><subject>Measurement uncertainty</subject><subject>Predictive models</subject><subject>test-time domain adaptation</subject><subject>Training-free alignment</subject><subject>Ultrasonic imaging</subject><subject>ultrasound images</subject><subject>Uncertainty</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EEqWwMzD4BVKu7TiJR1TxU6mIgQxskWPfJEapg-wUqW-Pq3Zgusv5ro4OIfcMVoyBeqzfNysOPF8JyTmU7IIsmJRVxmX-dUkWwMsqAyj4NbmJ8RuA5RLUgnzWQTvvfJ91AZG6ne6RxvkwItWj6_0O_Uy7KVA77RJI4-C6mU6eDtrbAUdL9-McdJz23lKLv85gvCVXnR4j3p3vktQvz_X6Ldt-vG7WT9vMFJxnXBhhIMkqjtpamyut2rZSrJSdsgVDa2WhEiRzU7QttExUHExVtJpbYXKxJHB6a8IUY8Cu-QnJPxwaBs2xSZOaNMcmzblJmjycJg4R_-EVE0lJ_AEY716X</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zeng, Hongye</creator><creator>Zou, Ke</creator><creator>Chen, Zhihao</creator><creator>Gao, Yuchong</creator><creator>Chen, Hongbo</creator><creator>Zhang, Haibin</creator><creator>Zhou, Kang</creator><creator>Wang, Meng</creator><creator>Jiang, Chang</creator><creator>Goh, Rick Siow Mong</creator><creator>Liu, Yong</creator><creator>Zhu, Chengcheng</creator><creator>Zheng, Rui</creator><creator>Fu, Huazhu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8789-4243</orcidid><orcidid>https://orcid.org/0000-0003-0391-2454</orcidid><orcidid>https://orcid.org/0000-0001-9116-1595</orcidid><orcidid>https://orcid.org/0000-0002-7468-3372</orcidid><orcidid>https://orcid.org/0009-0001-2585-9319</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0003-4162-0073</orcidid><orcidid>https://orcid.org/0000-0001-8962-559X</orcidid><orcidid>https://orcid.org/0000-0002-2025-9859</orcidid><orcidid>https://orcid.org/0000-0003-1686-9854</orcidid><orcidid>https://orcid.org/0000-0001-7882-1747</orcidid></search><sort><creationdate>2025</creationdate><title>Training-free image style alignment for domain shift on handheld ultrasound devices</title><author>Zeng, Hongye ; Zou, Ke ; Chen, Zhihao ; Gao, Yuchong ; Chen, Hongbo ; Zhang, Haibin ; Zhou, Kang ; Wang, Meng ; Jiang, Chang ; Goh, Rick Siow Mong ; Liu, Yong ; Zhu, Chengcheng ; Zheng, Rui ; Fu, Huazhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622-23c3c052292eaddd49a9bb89175f9d61edd5693c354c6bb0b13820c86ba2d3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation models</topic><topic>Annotations</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Diffusion models</topic><topic>handheld ultrasound device</topic><topic>Measurement uncertainty</topic><topic>Predictive models</topic><topic>test-time domain adaptation</topic><topic>Training-free alignment</topic><topic>Ultrasonic imaging</topic><topic>ultrasound images</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Hongye</creatorcontrib><creatorcontrib>Zou, Ke</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Gao, Yuchong</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Jiang, Chang</creatorcontrib><creatorcontrib>Goh, Rick Siow Mong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Chengcheng</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Hongye</au><au>Zou, Ke</au><au>Chen, Zhihao</au><au>Gao, Yuchong</au><au>Chen, Hongbo</au><au>Zhang, Haibin</au><au>Zhou, Kang</au><au>Wang, Meng</au><au>Jiang, Chang</au><au>Goh, Rick Siow Mong</au><au>Liu, Yong</au><au>Zhu, Chengcheng</au><au>Zheng, Rui</au><au>Fu, Huazhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training-free image style alignment for domain shift on handheld ultrasound devices</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.</abstract><pub>IEEE</pub><doi>10.1109/TMI.2024.3522071</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8789-4243</orcidid><orcidid>https://orcid.org/0000-0003-0391-2454</orcidid><orcidid>https://orcid.org/0000-0001-9116-1595</orcidid><orcidid>https://orcid.org/0000-0002-7468-3372</orcidid><orcidid>https://orcid.org/0009-0001-2585-9319</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0003-4162-0073</orcidid><orcidid>https://orcid.org/0000-0001-8962-559X</orcidid><orcidid>https://orcid.org/0000-0002-2025-9859</orcidid><orcidid>https://orcid.org/0000-0003-1686-9854</orcidid><orcidid>https://orcid.org/0000-0001-7882-1747</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2025, p.1-1 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10813622 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Annotations Computational modeling Data models Diffusion models handheld ultrasound device Measurement uncertainty Predictive models test-time domain adaptation Training-free alignment Ultrasonic imaging ultrasound images Uncertainty |
title | Training-free image style alignment for domain shift on handheld ultrasound devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training-free%20image%20style%20alignment%20for%20domain%20shift%20on%20handheld%20ultrasound%20devices&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zeng,%20Hongye&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3522071&rft_dat=%3Ccrossref_RIE%3E10_1109_TMI_2024_3522071%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10813622&rfr_iscdi=true |