Training-free image style alignment for domain shift on handheld ultrasound devices

Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2025, p.1-1
Hauptverfasser: Zeng, Hongye, Zou, Ke, Chen, Zhihao, Gao, Yuchong, Chen, Hongbo, Zhang, Haibin, Zhou, Kang, Wang, Meng, Jiang, Chang, Goh, Rick Siow Mong, Liu, Yong, Zhu, Chengcheng, Zheng, Rui, Fu, Huazhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume
creator Zeng, Hongye
Zou, Ke
Chen, Zhihao
Gao, Yuchong
Chen, Hongbo
Zhang, Haibin
Zhou, Kang
Wang, Meng
Jiang, Chang
Goh, Rick Siow Mong
Liu, Yong
Zhu, Chengcheng
Zheng, Rui
Fu, Huazhu
description Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.
doi_str_mv 10.1109/TMI.2024.3522071
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10813622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10813622</ieee_id><sourcerecordid>10_1109_TMI_2024_3522071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622-23c3c052292eaddd49a9bb89175f9d61edd5693c354c6bb0b13820c86ba2d3c43</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqWwMzD4BVKu7TiJR1TxU6mIgQxskWPfJEapg-wUqW-Pq3Zgusv5ro4OIfcMVoyBeqzfNysOPF8JyTmU7IIsmJRVxmX-dUkWwMsqAyj4NbmJ8RuA5RLUgnzWQTvvfJ91AZG6ne6RxvkwItWj6_0O_Uy7KVA77RJI4-C6mU6eDtrbAUdL9-McdJz23lKLv85gvCVXnR4j3p3vktQvz_X6Ldt-vG7WT9vMFJxnXBhhIMkqjtpamyut2rZSrJSdsgVDa2WhEiRzU7QttExUHExVtJpbYXKxJHB6a8IUY8Cu-QnJPxwaBs2xSZOaNMcmzblJmjycJg4R_-EVE0lJ_AEY716X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Training-free image style alignment for domain shift on handheld ultrasound devices</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Hongye ; Zou, Ke ; Chen, Zhihao ; Gao, Yuchong ; Chen, Hongbo ; Zhang, Haibin ; Zhou, Kang ; Wang, Meng ; Jiang, Chang ; Goh, Rick Siow Mong ; Liu, Yong ; Zhu, Chengcheng ; Zheng, Rui ; Fu, Huazhu</creator><creatorcontrib>Zeng, Hongye ; Zou, Ke ; Chen, Zhihao ; Gao, Yuchong ; Chen, Hongbo ; Zhang, Haibin ; Zhou, Kang ; Wang, Meng ; Jiang, Chang ; Goh, Rick Siow Mong ; Liu, Yong ; Zhu, Chengcheng ; Zheng, Rui ; Fu, Huazhu</creatorcontrib><description>Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3522071</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Annotations ; Computational modeling ; Data models ; Diffusion models ; handheld ultrasound device ; Measurement uncertainty ; Predictive models ; test-time domain adaptation ; Training-free alignment ; Ultrasonic imaging ; ultrasound images ; Uncertainty</subject><ispartof>IEEE transactions on medical imaging, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8789-4243 ; 0000-0003-0391-2454 ; 0000-0001-9116-1595 ; 0000-0002-7468-3372 ; 0009-0001-2585-9319 ; 0000-0002-9702-5524 ; 0000-0003-4162-0073 ; 0000-0001-8962-559X ; 0000-0002-2025-9859 ; 0000-0003-1686-9854 ; 0000-0001-7882-1747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10813622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10813622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Hongye</creatorcontrib><creatorcontrib>Zou, Ke</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Gao, Yuchong</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Jiang, Chang</creatorcontrib><creatorcontrib>Goh, Rick Siow Mong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Chengcheng</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><title>Training-free image style alignment for domain shift on handheld ultrasound devices</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.</description><subject>Adaptation models</subject><subject>Annotations</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Diffusion models</subject><subject>handheld ultrasound device</subject><subject>Measurement uncertainty</subject><subject>Predictive models</subject><subject>test-time domain adaptation</subject><subject>Training-free alignment</subject><subject>Ultrasonic imaging</subject><subject>ultrasound images</subject><subject>Uncertainty</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EEqWwMzD4BVKu7TiJR1TxU6mIgQxskWPfJEapg-wUqW-Pq3Zgusv5ro4OIfcMVoyBeqzfNysOPF8JyTmU7IIsmJRVxmX-dUkWwMsqAyj4NbmJ8RuA5RLUgnzWQTvvfJ91AZG6ne6RxvkwItWj6_0O_Uy7KVA77RJI4-C6mU6eDtrbAUdL9-McdJz23lKLv85gvCVXnR4j3p3vktQvz_X6Ldt-vG7WT9vMFJxnXBhhIMkqjtpamyut2rZSrJSdsgVDa2WhEiRzU7QttExUHExVtJpbYXKxJHB6a8IUY8Cu-QnJPxwaBs2xSZOaNMcmzblJmjycJg4R_-EVE0lJ_AEY716X</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zeng, Hongye</creator><creator>Zou, Ke</creator><creator>Chen, Zhihao</creator><creator>Gao, Yuchong</creator><creator>Chen, Hongbo</creator><creator>Zhang, Haibin</creator><creator>Zhou, Kang</creator><creator>Wang, Meng</creator><creator>Jiang, Chang</creator><creator>Goh, Rick Siow Mong</creator><creator>Liu, Yong</creator><creator>Zhu, Chengcheng</creator><creator>Zheng, Rui</creator><creator>Fu, Huazhu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8789-4243</orcidid><orcidid>https://orcid.org/0000-0003-0391-2454</orcidid><orcidid>https://orcid.org/0000-0001-9116-1595</orcidid><orcidid>https://orcid.org/0000-0002-7468-3372</orcidid><orcidid>https://orcid.org/0009-0001-2585-9319</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0003-4162-0073</orcidid><orcidid>https://orcid.org/0000-0001-8962-559X</orcidid><orcidid>https://orcid.org/0000-0002-2025-9859</orcidid><orcidid>https://orcid.org/0000-0003-1686-9854</orcidid><orcidid>https://orcid.org/0000-0001-7882-1747</orcidid></search><sort><creationdate>2025</creationdate><title>Training-free image style alignment for domain shift on handheld ultrasound devices</title><author>Zeng, Hongye ; Zou, Ke ; Chen, Zhihao ; Gao, Yuchong ; Chen, Hongbo ; Zhang, Haibin ; Zhou, Kang ; Wang, Meng ; Jiang, Chang ; Goh, Rick Siow Mong ; Liu, Yong ; Zhu, Chengcheng ; Zheng, Rui ; Fu, Huazhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622-23c3c052292eaddd49a9bb89175f9d61edd5693c354c6bb0b13820c86ba2d3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation models</topic><topic>Annotations</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Diffusion models</topic><topic>handheld ultrasound device</topic><topic>Measurement uncertainty</topic><topic>Predictive models</topic><topic>test-time domain adaptation</topic><topic>Training-free alignment</topic><topic>Ultrasonic imaging</topic><topic>ultrasound images</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Hongye</creatorcontrib><creatorcontrib>Zou, Ke</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Gao, Yuchong</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Jiang, Chang</creatorcontrib><creatorcontrib>Goh, Rick Siow Mong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhu, Chengcheng</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Fu, Huazhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Hongye</au><au>Zou, Ke</au><au>Chen, Zhihao</au><au>Gao, Yuchong</au><au>Chen, Hongbo</au><au>Zhang, Haibin</au><au>Zhou, Kang</au><au>Wang, Meng</au><au>Jiang, Chang</au><au>Goh, Rick Siow Mong</au><au>Liu, Yong</au><au>Zhu, Chengcheng</au><au>Zheng, Rui</au><au>Fu, Huazhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training-free image style alignment for domain shift on handheld ultrasound devices</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) to align the style of handheld device data to those of standard devices. The proposed TISA eliminates the demand for source data, and can transform the image style while preserving spatial context during testing. Furthermore, our TISA avoids continuous updates to the pre-trained model compared to other test-time methods and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data than other test-time adaptation methods. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness, and the automatic measurements agree well with manual measurements made by human experts. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use. Code is available at https://github.com/zenghy96/TISA.</abstract><pub>IEEE</pub><doi>10.1109/TMI.2024.3522071</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8789-4243</orcidid><orcidid>https://orcid.org/0000-0003-0391-2454</orcidid><orcidid>https://orcid.org/0000-0001-9116-1595</orcidid><orcidid>https://orcid.org/0000-0002-7468-3372</orcidid><orcidid>https://orcid.org/0009-0001-2585-9319</orcidid><orcidid>https://orcid.org/0000-0002-9702-5524</orcidid><orcidid>https://orcid.org/0000-0003-4162-0073</orcidid><orcidid>https://orcid.org/0000-0001-8962-559X</orcidid><orcidid>https://orcid.org/0000-0002-2025-9859</orcidid><orcidid>https://orcid.org/0000-0003-1686-9854</orcidid><orcidid>https://orcid.org/0000-0001-7882-1747</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2025, p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_10813622
source IEEE Electronic Library (IEL)
subjects Adaptation models
Annotations
Computational modeling
Data models
Diffusion models
handheld ultrasound device
Measurement uncertainty
Predictive models
test-time domain adaptation
Training-free alignment
Ultrasonic imaging
ultrasound images
Uncertainty
title Training-free image style alignment for domain shift on handheld ultrasound devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training-free%20image%20style%20alignment%20for%20domain%20shift%20on%20handheld%20ultrasound%20devices&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zeng,%20Hongye&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3522071&rft_dat=%3Ccrossref_RIE%3E10_1109_TMI_2024_3522071%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10813622&rfr_iscdi=true