End-to-End Deep Learning for TDD MIMO Systems in the 6G Upper Midbands

This paper proposes and analyzes novel deep learning methods for downlink (DL) single-user multiple-input multiple-output (MIMO) and multi-user MIMO (MU-MIMO) systems operating in time division duplex mode. A motivating application is the 6G upper midbands (7-24 GHz), where the base station (BS) ant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-12, p.1-1
Hauptverfasser: Park, Juseong, Sohrabi, Foad, Ghosh, Amitava, Andrews, Jeffrey G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume
creator Park, Juseong
Sohrabi, Foad
Ghosh, Amitava
Andrews, Jeffrey G.
description This paper proposes and analyzes novel deep learning methods for downlink (DL) single-user multiple-input multiple-output (MIMO) and multi-user MIMO (MU-MIMO) systems operating in time division duplex mode. A motivating application is the 6G upper midbands (7-24 GHz), where the base station (BS) antenna arrays are large, user equipment array sizes are moderate, and theoretically optimal approaches are practically infeasible for several reasons. To deal with uplink (UL) pilot overhead and low signal power issues, we introduce the channel-adaptive pilot, as part of the novel analog channel state information feedback mechanism. Deep neural network (DNN)-generated pilots are used to linearly transform the UL channel matrix into lower-dimensional latent vectors. Meanwhile, the BS employs a second DNN that processes the received UL pilots to directly generate near-optimal DL precoders. The training is end-to-end which exploits synergies between the two DNNs. For MU-MIMO precoding, we propose a DNN structure inspired by theoretically optimum linear precoding. The proposed methods are evaluated against genie-aided upper bounds and conventional approaches, using realistic upper midband datasets. Numerical results demonstrate the potential of our approach to achieve significantly increased sum-rate, particularly at moderate to high signal-to-noise ratio and when UL pilot overhead is constrained.
doi_str_mv 10.1109/TWC.2024.3516633
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10810300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10810300</ieee_id><sourcerecordid>10_1109_TWC_2024_3516633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620-d6d5b5be3f8dc3212bf99e778b005ce9db7f0b15400d669468ccb115c7567ca43</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzD4D7i8Z8d2MqJ-USlVB4IYo9h-gSCaRnaX_ntatUOne4d77nAYe0aYIELxWn1NJxJkNlEajVHqho1Q61xImeW3p66MQGnNPXtI6RcArdF6xBbzPoj9ThyDz4gGXlIT-67_5u0u8mo24-vVesM_DmlP28S7nu9_iJsl_xwGinzdBdf0IT2yu7b5S_R0yTGrFvNq-i7KzXI1fSuFNxJEMEE77Ui1efBKonRtUZC1uQPQnorgbAsOdQYQjCkyk3vvELW32ljfZGrM4Hzr4y6lSG09xG7bxEONUJ801EcN9UlDfdFwRF7OSEdEV_McQQGof-lYVrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>End-to-End Deep Learning for TDD MIMO Systems in the 6G Upper Midbands</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Juseong ; Sohrabi, Foad ; Ghosh, Amitava ; Andrews, Jeffrey G.</creator><creatorcontrib>Park, Juseong ; Sohrabi, Foad ; Ghosh, Amitava ; Andrews, Jeffrey G.</creatorcontrib><description>This paper proposes and analyzes novel deep learning methods for downlink (DL) single-user multiple-input multiple-output (MIMO) and multi-user MIMO (MU-MIMO) systems operating in time division duplex mode. A motivating application is the 6G upper midbands (7-24 GHz), where the base station (BS) antenna arrays are large, user equipment array sizes are moderate, and theoretically optimal approaches are practically infeasible for several reasons. To deal with uplink (UL) pilot overhead and low signal power issues, we introduce the channel-adaptive pilot, as part of the novel analog channel state information feedback mechanism. Deep neural network (DNN)-generated pilots are used to linearly transform the UL channel matrix into lower-dimensional latent vectors. Meanwhile, the BS employs a second DNN that processes the received UL pilots to directly generate near-optimal DL precoders. The training is end-to-end which exploits synergies between the two DNNs. For MU-MIMO precoding, we propose a DNN structure inspired by theoretically optimum linear precoding. The proposed methods are evaluated against genie-aided upper bounds and conventional approaches, using realistic upper midband datasets. Numerical results demonstrate the potential of our approach to achieve significantly increased sum-rate, particularly at moderate to high signal-to-noise ratio and when UL pilot overhead is constrained.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3516633</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>6G mobile communication ; Antenna arrays ; Array signal processing ; Artificial neural networks ; Channel estimation ; channel state information feedback ; Deep learning ; mid-band ; MIMO ; multiple-input multiple-output ; Precoding ; Signal to noise ratio ; time division duplex ; Training</subject><ispartof>IEEE transactions on wireless communications, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8067-8062 ; 0000-0002-9115-5088 ; 0000-0002-7514-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10810300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10810300$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Juseong</creatorcontrib><creatorcontrib>Sohrabi, Foad</creatorcontrib><creatorcontrib>Ghosh, Amitava</creatorcontrib><creatorcontrib>Andrews, Jeffrey G.</creatorcontrib><title>End-to-End Deep Learning for TDD MIMO Systems in the 6G Upper Midbands</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper proposes and analyzes novel deep learning methods for downlink (DL) single-user multiple-input multiple-output (MIMO) and multi-user MIMO (MU-MIMO) systems operating in time division duplex mode. A motivating application is the 6G upper midbands (7-24 GHz), where the base station (BS) antenna arrays are large, user equipment array sizes are moderate, and theoretically optimal approaches are practically infeasible for several reasons. To deal with uplink (UL) pilot overhead and low signal power issues, we introduce the channel-adaptive pilot, as part of the novel analog channel state information feedback mechanism. Deep neural network (DNN)-generated pilots are used to linearly transform the UL channel matrix into lower-dimensional latent vectors. Meanwhile, the BS employs a second DNN that processes the received UL pilots to directly generate near-optimal DL precoders. The training is end-to-end which exploits synergies between the two DNNs. For MU-MIMO precoding, we propose a DNN structure inspired by theoretically optimum linear precoding. The proposed methods are evaluated against genie-aided upper bounds and conventional approaches, using realistic upper midband datasets. Numerical results demonstrate the potential of our approach to achieve significantly increased sum-rate, particularly at moderate to high signal-to-noise ratio and when UL pilot overhead is constrained.</description><subject>6G mobile communication</subject><subject>Antenna arrays</subject><subject>Array signal processing</subject><subject>Artificial neural networks</subject><subject>Channel estimation</subject><subject>channel state information feedback</subject><subject>Deep learning</subject><subject>mid-band</subject><subject>MIMO</subject><subject>multiple-input multiple-output</subject><subject>Precoding</subject><subject>Signal to noise ratio</subject><subject>time division duplex</subject><subject>Training</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzD4D7i8Z8d2MqJ-USlVB4IYo9h-gSCaRnaX_ntatUOne4d77nAYe0aYIELxWn1NJxJkNlEajVHqho1Q61xImeW3p66MQGnNPXtI6RcArdF6xBbzPoj9ThyDz4gGXlIT-67_5u0u8mo24-vVesM_DmlP28S7nu9_iJsl_xwGinzdBdf0IT2yu7b5S_R0yTGrFvNq-i7KzXI1fSuFNxJEMEE77Ui1efBKonRtUZC1uQPQnorgbAsOdQYQjCkyk3vvELW32ljfZGrM4Hzr4y6lSG09xG7bxEONUJ801EcN9UlDfdFwRF7OSEdEV_McQQGof-lYVrE</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Park, Juseong</creator><creator>Sohrabi, Foad</creator><creator>Ghosh, Amitava</creator><creator>Andrews, Jeffrey G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8067-8062</orcidid><orcidid>https://orcid.org/0000-0002-9115-5088</orcidid><orcidid>https://orcid.org/0000-0002-7514-2578</orcidid></search><sort><creationdate>20241219</creationdate><title>End-to-End Deep Learning for TDD MIMO Systems in the 6G Upper Midbands</title><author>Park, Juseong ; Sohrabi, Foad ; Ghosh, Amitava ; Andrews, Jeffrey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620-d6d5b5be3f8dc3212bf99e778b005ce9db7f0b15400d669468ccb115c7567ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6G mobile communication</topic><topic>Antenna arrays</topic><topic>Array signal processing</topic><topic>Artificial neural networks</topic><topic>Channel estimation</topic><topic>channel state information feedback</topic><topic>Deep learning</topic><topic>mid-band</topic><topic>MIMO</topic><topic>multiple-input multiple-output</topic><topic>Precoding</topic><topic>Signal to noise ratio</topic><topic>time division duplex</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Juseong</creatorcontrib><creatorcontrib>Sohrabi, Foad</creatorcontrib><creatorcontrib>Ghosh, Amitava</creatorcontrib><creatorcontrib>Andrews, Jeffrey G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Juseong</au><au>Sohrabi, Foad</au><au>Ghosh, Amitava</au><au>Andrews, Jeffrey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-End Deep Learning for TDD MIMO Systems in the 6G Upper Midbands</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-12-19</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper proposes and analyzes novel deep learning methods for downlink (DL) single-user multiple-input multiple-output (MIMO) and multi-user MIMO (MU-MIMO) systems operating in time division duplex mode. A motivating application is the 6G upper midbands (7-24 GHz), where the base station (BS) antenna arrays are large, user equipment array sizes are moderate, and theoretically optimal approaches are practically infeasible for several reasons. To deal with uplink (UL) pilot overhead and low signal power issues, we introduce the channel-adaptive pilot, as part of the novel analog channel state information feedback mechanism. Deep neural network (DNN)-generated pilots are used to linearly transform the UL channel matrix into lower-dimensional latent vectors. Meanwhile, the BS employs a second DNN that processes the received UL pilots to directly generate near-optimal DL precoders. The training is end-to-end which exploits synergies between the two DNNs. For MU-MIMO precoding, we propose a DNN structure inspired by theoretically optimum linear precoding. The proposed methods are evaluated against genie-aided upper bounds and conventional approaches, using realistic upper midband datasets. Numerical results demonstrate the potential of our approach to achieve significantly increased sum-rate, particularly at moderate to high signal-to-noise ratio and when UL pilot overhead is constrained.</abstract><pub>IEEE</pub><doi>10.1109/TWC.2024.3516633</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8067-8062</orcidid><orcidid>https://orcid.org/0000-0002-9115-5088</orcidid><orcidid>https://orcid.org/0000-0002-7514-2578</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-12, p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_10810300
source IEEE Electronic Library (IEL)
subjects 6G mobile communication
Antenna arrays
Array signal processing
Artificial neural networks
Channel estimation
channel state information feedback
Deep learning
mid-band
MIMO
multiple-input multiple-output
Precoding
Signal to noise ratio
time division duplex
Training
title End-to-End Deep Learning for TDD MIMO Systems in the 6G Upper Midbands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-End%20Deep%20Learning%20for%20TDD%20MIMO%20Systems%20in%20the%206G%20Upper%20Midbands&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Park,%20Juseong&rft.date=2024-12-19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3516633&rft_dat=%3Ccrossref_RIE%3E10_1109_TWC_2024_3516633%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10810300&rfr_iscdi=true