Detecting and Correcting Gain Jumps in TES Microcalorimeters

Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2025-08, Vol.35 (5), p.1-5
Hauptverfasser: Baker, Thomas A., Becker, Daniel T., Fowler, Joseph W., Keller, Mark W., Swetz, Daniel S., Ullom, Joel N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 35
creator Baker, Thomas A.
Becker, Daniel T.
Fowler, Joseph W.
Keller, Mark W.
Swetz, Daniel S.
Ullom, Joel N.
description Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.
doi_str_mv 10.1109/TASC.2024.3517565
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10803563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10803563</ieee_id><sourcerecordid>3150555078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-30b7dccb7cc69bcfd216a9878ec9d62a3f36069938b459bc080fdefadc5b8e43</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn3Nk5x5FYqlAKqIih2S3HcVCqNil2OvDvcdUOTPdOeu_u6WPsHmGGCMVTNV-XMw48mwnCnCRdsAkSqZQT0mXUQJgqzsU1uwlhA4CZymjCnl_c6OzY9d-J6ZukHLw_r0vT9cnHYbcPSRTVYp18dtYP1mwH3-1iyodbdtWabXB35zll1euiKt_S1dfyvZyvUou5HFMBdd5YW-fWyqK2bcNRmkLlytmikdyIVkiQRSFUnVE0gIK2ca1pLNXKZWLKHk9n9374Obgw6s1w8H38qAUSEBHkKrrw5IolQ_Cu1fvY0_hfjaCPjPSRkT4y0mdGMfNwynTOuX9-BYKkEH-9t2J1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150555078</pqid></control><display><type>article</type><title>Detecting and Correcting Gain Jumps in TES Microcalorimeters</title><source>IEEE Electronic Library (IEL)</source><creator>Baker, Thomas A. ; Becker, Daniel T. ; Fowler, Joseph W. ; Keller, Mark W. ; Swetz, Daniel S. ; Ullom, Joel N.</creator><creatorcontrib>Baker, Thomas A. ; Becker, Daniel T. ; Fowler, Joseph W. ; Keller, Mark W. ; Swetz, Daniel S. ; Ullom, Joel N.</creatorcontrib><description>Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3517565</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Calorimeters ; Data acquisition ; Data analysis ; Detection algorithms ; Detectors ; Gamma rays ; Kernel ; Noise ; Sensor arrays ; Shape ; Software ; spectroscopy ; Superconductivity</subject><ispartof>IEEE transactions on applied superconductivity, 2025-08, Vol.35 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-30b7dccb7cc69bcfd216a9878ec9d62a3f36069938b459bc080fdefadc5b8e43</cites><orcidid>0000-0001-6942-8636 ; 0000-0002-8079-0895 ; 0009-0003-6650-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10803563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10803563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baker, Thomas A.</creatorcontrib><creatorcontrib>Becker, Daniel T.</creatorcontrib><creatorcontrib>Fowler, Joseph W.</creatorcontrib><creatorcontrib>Keller, Mark W.</creatorcontrib><creatorcontrib>Swetz, Daniel S.</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><title>Detecting and Correcting Gain Jumps in TES Microcalorimeters</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Calorimeters</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Detection algorithms</subject><subject>Detectors</subject><subject>Gamma rays</subject><subject>Kernel</subject><subject>Noise</subject><subject>Sensor arrays</subject><subject>Shape</subject><subject>Software</subject><subject>spectroscopy</subject><subject>Superconductivity</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqXwA5AYIjGn3Nk5x5FYqlAKqIih2S3HcVCqNil2OvDvcdUOTPdOeu_u6WPsHmGGCMVTNV-XMw48mwnCnCRdsAkSqZQT0mXUQJgqzsU1uwlhA4CZymjCnl_c6OzY9d-J6ZukHLw_r0vT9cnHYbcPSRTVYp18dtYP1mwH3-1iyodbdtWabXB35zll1euiKt_S1dfyvZyvUou5HFMBdd5YW-fWyqK2bcNRmkLlytmikdyIVkiQRSFUnVE0gIK2ca1pLNXKZWLKHk9n9374Obgw6s1w8H38qAUSEBHkKrrw5IolQ_Cu1fvY0_hfjaCPjPSRkT4y0mdGMfNwynTOuX9-BYKkEH-9t2J1</recordid><startdate>20250801</startdate><enddate>20250801</enddate><creator>Baker, Thomas A.</creator><creator>Becker, Daniel T.</creator><creator>Fowler, Joseph W.</creator><creator>Keller, Mark W.</creator><creator>Swetz, Daniel S.</creator><creator>Ullom, Joel N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6942-8636</orcidid><orcidid>https://orcid.org/0000-0002-8079-0895</orcidid><orcidid>https://orcid.org/0009-0003-6650-5087</orcidid></search><sort><creationdate>20250801</creationdate><title>Detecting and Correcting Gain Jumps in TES Microcalorimeters</title><author>Baker, Thomas A. ; Becker, Daniel T. ; Fowler, Joseph W. ; Keller, Mark W. ; Swetz, Daniel S. ; Ullom, Joel N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-30b7dccb7cc69bcfd216a9878ec9d62a3f36069938b459bc080fdefadc5b8e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Calorimeters</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Detection algorithms</topic><topic>Detectors</topic><topic>Gamma rays</topic><topic>Kernel</topic><topic>Noise</topic><topic>Sensor arrays</topic><topic>Shape</topic><topic>Software</topic><topic>spectroscopy</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Thomas A.</creatorcontrib><creatorcontrib>Becker, Daniel T.</creatorcontrib><creatorcontrib>Fowler, Joseph W.</creatorcontrib><creatorcontrib>Keller, Mark W.</creatorcontrib><creatorcontrib>Swetz, Daniel S.</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baker, Thomas A.</au><au>Becker, Daniel T.</au><au>Fowler, Joseph W.</au><au>Keller, Mark W.</au><au>Swetz, Daniel S.</au><au>Ullom, Joel N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting and Correcting Gain Jumps in TES Microcalorimeters</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2025-08-01</date><risdate>2025</risdate><volume>35</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Arrays of microcalorimeters based on transition-edge sensors (TESs) are being actively deployed to laboratories all over the world. A TES microcalorimeter array produces very large quantities of data and users of these devices have varying levels of experience, so it is important to provide robust software for data acquisition and analysis that can function with minimal user supervision. This software should be capable of addressing common phenomena that can adversely affect spectrum quality. Gain jumping is one such phenomenon that is characterized by abrupt changes in the gain of a device. Left unaddressed, gain jumps can degrade spectra by introducing false peaks. We are not aware of any previously published methods for resetting gain jumps during data acquisition or existing algorithms for correcting data that is degraded by gain jumps. We have developed automated methods for detecting and correcting gain jumps in gamma-ray TES microcalorimeters. We present a procedure for resetting gain jumps during a live data acquisition that involves briefly driving the TES into its normal state using the bias current. We also describe an algorithm for locating gain jumps and identifying unique gain states within existing microcalorimeter data. Finally, we provide a possible approach for correcting gain jumps after they have been identified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3517565</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6942-8636</orcidid><orcidid>https://orcid.org/0000-0002-8079-0895</orcidid><orcidid>https://orcid.org/0009-0003-6650-5087</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2025-08, Vol.35 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10803563
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrays
Calorimeters
Data acquisition
Data analysis
Detection algorithms
Detectors
Gamma rays
Kernel
Noise
Sensor arrays
Shape
Software
spectroscopy
Superconductivity
title Detecting and Correcting Gain Jumps in TES Microcalorimeters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20and%20Correcting%20Gain%20Jumps%20in%20TES%20Microcalorimeters&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Baker,%20Thomas%20A.&rft.date=2025-08-01&rft.volume=35&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3517565&rft_dat=%3Cproquest_RIE%3E3150555078%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150555078&rft_id=info:pmid/&rft_ieee_id=10803563&rfr_iscdi=true