Control of Periodically Waked Wind Turbines
Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2024-12, p.1-0 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on control systems technology |
container_volume | |
creator | van Vondelen, Aemilius A. W. Pamososuryo, Atindriyo K. Navalkar, Sachin T. van Wingerden, Jan-Willem |
description | Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff. |
doi_str_mv | 10.1109/TCST.2024.3508577 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10798995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798995</ieee_id><sourcerecordid>10_1109_TCST_2024_3508577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-5e54a002680315730681e352ca940b4473466730369f2bf654699251bd1eac5f3</originalsourceid><addsrcrecordid>eNpNj09LxDAUxIMouK5-AMFD79L6XpKXNEcp_oMFBSt7DGmbQrS2kqyH_fa27B48zTDMDPwYu0YoEMHc1dV7XXDgshAEJWl9wlZIVOZQKjqdPSiRKxLqnF2k9AmAkrhesdtqGndxGrKpz958DFMXWjcM-2zrvnyXbcPYZfVvbMLo0yU7692Q_NVR1-zj8aGunvPN69NLdb_JWzS4y8mTdABclSCQtABVohfEW2ckNFJqIZWaY6FMz5tekVTGcMKmQ-9a6sWa4eG3jVNK0ff2J4ZvF_cWwS60dqG1C6090s6bm8MmeO__9bUpjSHxB1z5Tm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of Periodically Waked Wind Turbines</title><source>IEEE Electronic Library (IEL)</source><creator>van Vondelen, Aemilius A. W. ; Pamososuryo, Atindriyo K. ; Navalkar, Sachin T. ; van Wingerden, Jan-Willem</creator><creatorcontrib>van Vondelen, Aemilius A. W. ; Pamososuryo, Atindriyo K. ; Navalkar, Sachin T. ; van Wingerden, Jan-Willem</creatorcontrib><description>Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2024.3508577</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blades ; Costs ; Downstream wind turbine ; Fatigue ; helix ; individual pitch control ; large-eddy simulation ; Loading ; Production ; Regulators ; Rotors ; Synchronization ; wake mixing ; Wind farms ; Wind turbines</subject><ispartof>IEEE transactions on control systems technology, 2024-12, p.1-0</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>van Vondelen ; J.W.vanWingerden@tudelft.nl ; a.k.pamososuryo@tudelft.nl</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798995$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>van Vondelen, Aemilius A. W.</creatorcontrib><creatorcontrib>Pamososuryo, Atindriyo K.</creatorcontrib><creatorcontrib>Navalkar, Sachin T.</creatorcontrib><creatorcontrib>van Wingerden, Jan-Willem</creatorcontrib><title>Control of Periodically Waked Wind Turbines</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.</description><subject>Blades</subject><subject>Costs</subject><subject>Downstream wind turbine</subject><subject>Fatigue</subject><subject>helix</subject><subject>individual pitch control</subject><subject>large-eddy simulation</subject><subject>Loading</subject><subject>Production</subject><subject>Regulators</subject><subject>Rotors</subject><subject>Synchronization</subject><subject>wake mixing</subject><subject>Wind farms</subject><subject>Wind turbines</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNj09LxDAUxIMouK5-AMFD79L6XpKXNEcp_oMFBSt7DGmbQrS2kqyH_fa27B48zTDMDPwYu0YoEMHc1dV7XXDgshAEJWl9wlZIVOZQKjqdPSiRKxLqnF2k9AmAkrhesdtqGndxGrKpz958DFMXWjcM-2zrvnyXbcPYZfVvbMLo0yU7692Q_NVR1-zj8aGunvPN69NLdb_JWzS4y8mTdABclSCQtABVohfEW2ckNFJqIZWaY6FMz5tekVTGcMKmQ-9a6sWa4eG3jVNK0ff2J4ZvF_cWwS60dqG1C6090s6bm8MmeO__9bUpjSHxB1z5Tm0</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>van Vondelen, Aemilius A. W.</creator><creator>Pamososuryo, Atindriyo K.</creator><creator>Navalkar, Sachin T.</creator><creator>van Wingerden, Jan-Willem</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/van Vondelen</orcidid><orcidid>https://orcid.org/J.W.vanWingerden@tudelft.nl</orcidid><orcidid>https://orcid.org/a.k.pamososuryo@tudelft.nl</orcidid></search><sort><creationdate>20241213</creationdate><title>Control of Periodically Waked Wind Turbines</title><author>van Vondelen, Aemilius A. W. ; Pamososuryo, Atindriyo K. ; Navalkar, Sachin T. ; van Wingerden, Jan-Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-5e54a002680315730681e352ca940b4473466730369f2bf654699251bd1eac5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blades</topic><topic>Costs</topic><topic>Downstream wind turbine</topic><topic>Fatigue</topic><topic>helix</topic><topic>individual pitch control</topic><topic>large-eddy simulation</topic><topic>Loading</topic><topic>Production</topic><topic>Regulators</topic><topic>Rotors</topic><topic>Synchronization</topic><topic>wake mixing</topic><topic>Wind farms</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Vondelen, Aemilius A. W.</creatorcontrib><creatorcontrib>Pamososuryo, Atindriyo K.</creatorcontrib><creatorcontrib>Navalkar, Sachin T.</creatorcontrib><creatorcontrib>van Wingerden, Jan-Willem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Vondelen, Aemilius A. W.</au><au>Pamososuryo, Atindriyo K.</au><au>Navalkar, Sachin T.</au><au>van Wingerden, Jan-Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Periodically Waked Wind Turbines</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-12-13</date><risdate>2024</risdate><spage>1</spage><epage>0</epage><pages>1-0</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2024.3508577</doi><tpages>0</tpages><orcidid>https://orcid.org/van Vondelen</orcidid><orcidid>https://orcid.org/J.W.vanWingerden@tudelft.nl</orcidid><orcidid>https://orcid.org/a.k.pamososuryo@tudelft.nl</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2024-12, p.1-0 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_10798995 |
source | IEEE Electronic Library (IEL) |
subjects | Blades Costs Downstream wind turbine Fatigue helix individual pitch control large-eddy simulation Loading Production Regulators Rotors Synchronization wake mixing Wind farms Wind turbines |
title | Control of Periodically Waked Wind Turbines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Periodically%20Waked%20Wind%20Turbines&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=van%20Vondelen,%20Aemilius%20A.%20W.&rft.date=2024-12-13&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2024.3508577&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCST_2024_3508577%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798995&rfr_iscdi=true |