Control of Periodically Waked Wind Turbines

Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2024-12, p.1-0
Hauptverfasser: van Vondelen, Aemilius A. W., Pamososuryo, Atindriyo K., Navalkar, Sachin T., van Wingerden, Jan-Willem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 0
container_issue
container_start_page 1
container_title IEEE transactions on control systems technology
container_volume
creator van Vondelen, Aemilius A. W.
Pamososuryo, Atindriyo K.
Navalkar, Sachin T.
van Wingerden, Jan-Willem
description Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.
doi_str_mv 10.1109/TCST.2024.3508577
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10798995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798995</ieee_id><sourcerecordid>10_1109_TCST_2024_3508577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-5e54a002680315730681e352ca940b4473466730369f2bf654699251bd1eac5f3</originalsourceid><addsrcrecordid>eNpNj09LxDAUxIMouK5-AMFD79L6XpKXNEcp_oMFBSt7DGmbQrS2kqyH_fa27B48zTDMDPwYu0YoEMHc1dV7XXDgshAEJWl9wlZIVOZQKjqdPSiRKxLqnF2k9AmAkrhesdtqGndxGrKpz958DFMXWjcM-2zrvnyXbcPYZfVvbMLo0yU7692Q_NVR1-zj8aGunvPN69NLdb_JWzS4y8mTdABclSCQtABVohfEW2ckNFJqIZWaY6FMz5tekVTGcMKmQ-9a6sWa4eG3jVNK0ff2J4ZvF_cWwS60dqG1C6090s6bm8MmeO__9bUpjSHxB1z5Tm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of Periodically Waked Wind Turbines</title><source>IEEE Electronic Library (IEL)</source><creator>van Vondelen, Aemilius A. W. ; Pamososuryo, Atindriyo K. ; Navalkar, Sachin T. ; van Wingerden, Jan-Willem</creator><creatorcontrib>van Vondelen, Aemilius A. W. ; Pamososuryo, Atindriyo K. ; Navalkar, Sachin T. ; van Wingerden, Jan-Willem</creatorcontrib><description>Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2024.3508577</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blades ; Costs ; Downstream wind turbine ; Fatigue ; helix ; individual pitch control ; large-eddy simulation ; Loading ; Production ; Regulators ; Rotors ; Synchronization ; wake mixing ; Wind farms ; Wind turbines</subject><ispartof>IEEE transactions on control systems technology, 2024-12, p.1-0</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>van Vondelen ; J.W.vanWingerden@tudelft.nl ; a.k.pamososuryo@tudelft.nl</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798995$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>van Vondelen, Aemilius A. W.</creatorcontrib><creatorcontrib>Pamososuryo, Atindriyo K.</creatorcontrib><creatorcontrib>Navalkar, Sachin T.</creatorcontrib><creatorcontrib>van Wingerden, Jan-Willem</creatorcontrib><title>Control of Periodically Waked Wind Turbines</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.</description><subject>Blades</subject><subject>Costs</subject><subject>Downstream wind turbine</subject><subject>Fatigue</subject><subject>helix</subject><subject>individual pitch control</subject><subject>large-eddy simulation</subject><subject>Loading</subject><subject>Production</subject><subject>Regulators</subject><subject>Rotors</subject><subject>Synchronization</subject><subject>wake mixing</subject><subject>Wind farms</subject><subject>Wind turbines</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNj09LxDAUxIMouK5-AMFD79L6XpKXNEcp_oMFBSt7DGmbQrS2kqyH_fa27B48zTDMDPwYu0YoEMHc1dV7XXDgshAEJWl9wlZIVOZQKjqdPSiRKxLqnF2k9AmAkrhesdtqGndxGrKpz958DFMXWjcM-2zrvnyXbcPYZfVvbMLo0yU7692Q_NVR1-zj8aGunvPN69NLdb_JWzS4y8mTdABclSCQtABVohfEW2ckNFJqIZWaY6FMz5tekVTGcMKmQ-9a6sWa4eG3jVNK0ff2J4ZvF_cWwS60dqG1C6090s6bm8MmeO__9bUpjSHxB1z5Tm0</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>van Vondelen, Aemilius A. W.</creator><creator>Pamososuryo, Atindriyo K.</creator><creator>Navalkar, Sachin T.</creator><creator>van Wingerden, Jan-Willem</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/van Vondelen</orcidid><orcidid>https://orcid.org/J.W.vanWingerden@tudelft.nl</orcidid><orcidid>https://orcid.org/a.k.pamososuryo@tudelft.nl</orcidid></search><sort><creationdate>20241213</creationdate><title>Control of Periodically Waked Wind Turbines</title><author>van Vondelen, Aemilius A. W. ; Pamososuryo, Atindriyo K. ; Navalkar, Sachin T. ; van Wingerden, Jan-Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-5e54a002680315730681e352ca940b4473466730369f2bf654699251bd1eac5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blades</topic><topic>Costs</topic><topic>Downstream wind turbine</topic><topic>Fatigue</topic><topic>helix</topic><topic>individual pitch control</topic><topic>large-eddy simulation</topic><topic>Loading</topic><topic>Production</topic><topic>Regulators</topic><topic>Rotors</topic><topic>Synchronization</topic><topic>wake mixing</topic><topic>Wind farms</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Vondelen, Aemilius A. W.</creatorcontrib><creatorcontrib>Pamososuryo, Atindriyo K.</creatorcontrib><creatorcontrib>Navalkar, Sachin T.</creatorcontrib><creatorcontrib>van Wingerden, Jan-Willem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Vondelen, Aemilius A. W.</au><au>Pamososuryo, Atindriyo K.</au><au>Navalkar, Sachin T.</au><au>van Wingerden, Jan-Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Periodically Waked Wind Turbines</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-12-13</date><risdate>2024</risdate><spage>1</spage><epage>0</epage><pages>1-0</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine's blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator's demands and the desired loads/energy capture tradeoff.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2024.3508577</doi><tpages>0</tpages><orcidid>https://orcid.org/van Vondelen</orcidid><orcidid>https://orcid.org/J.W.vanWingerden@tudelft.nl</orcidid><orcidid>https://orcid.org/a.k.pamososuryo@tudelft.nl</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2024-12, p.1-0
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_10798995
source IEEE Electronic Library (IEL)
subjects Blades
Costs
Downstream wind turbine
Fatigue
helix
individual pitch control
large-eddy simulation
Loading
Production
Regulators
Rotors
Synchronization
wake mixing
Wind farms
Wind turbines
title Control of Periodically Waked Wind Turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Periodically%20Waked%20Wind%20Turbines&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=van%20Vondelen,%20Aemilius%20A.%20W.&rft.date=2024-12-13&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2024.3508577&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCST_2024_3508577%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798995&rfr_iscdi=true