Modeling Epidemic Spread: A Gaussian Process Regression Approach

Modeling epidemic spread is critical for informing policy decisions aimed at mitigation. Accordingly, in this work we present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread through the difference on the logarithmic scale of the infected cases. We bound t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024-12, p.1-1
Hauptverfasser: She, Baike, Xin, Lei, Pare, Philip E., Hale, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE control systems letters
container_volume
creator She, Baike
Xin, Lei
Pare, Philip E.
Hale, Matthew
description Modeling epidemic spread is critical for informing policy decisions aimed at mitigation. Accordingly, in this work we present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread through the difference on the logarithmic scale of the infected cases. We bound the variance of the predictions made by GPR, which quantifies the impact of epidemic data on the proposed model. Next, we derive a high-probability error bound on the prediction error in terms of the distance between the training points and a testing point, the posterior variance, and the level of change in the spreading process, and we assess how the characteristics of the epidemic spread and infection data influence this error bound. We present examples that use GPR to model and predict epidemic spread by using real-world infection data gathered in the UK during the COVID-19 epidemic. These examples illustrate that, under typical conditions, the prediction for the next twenty days has 94.29% of the noisy data located within the 95% confidence interval, validating these predictions. We further compare the modeling and prediction results with other methods, such as polynomial regression, k-nearest neighbors (KNN) regression, and neural networks, to demonstrate the benefits of leveraging GPR in disease spread modeling.
doi_str_mv 10.1109/LCSYS.2024.3517457
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10798625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798625</ieee_id><sourcerecordid>10798625</sourcerecordid><originalsourceid>FETCH-ieee_primary_107986253</originalsourceid><addsrcrecordid>eNqFycEKgjAYAOARBEn5AtFhL6Bt0zntlIjVoSCySycZ-mcLdWOjQ29fh-6dvsOH0JKSkFKSrY9FdatCRlgcRpyKmIsJ8lgseEBjnsyQ79yTEEJTJgjLPLQ96RZ6NXa4NKqFQTW4MhZku8E53suXc0qO-Gx1A87hC3T2q9Ijzo2xWjaPBZreZe_A_zlHq115LQ6BAoDaWDVI-64pEVmaMB796Q_93TjY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Epidemic Spread: A Gaussian Process Regression Approach</title><source>IEEE Electronic Library (IEL)</source><creator>She, Baike ; Xin, Lei ; Pare, Philip E. ; Hale, Matthew</creator><creatorcontrib>She, Baike ; Xin, Lei ; Pare, Philip E. ; Hale, Matthew</creatorcontrib><description>Modeling epidemic spread is critical for informing policy decisions aimed at mitigation. Accordingly, in this work we present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread through the difference on the logarithmic scale of the infected cases. We bound the variance of the predictions made by GPR, which quantifies the impact of epidemic data on the proposed model. Next, we derive a high-probability error bound on the prediction error in terms of the distance between the training points and a testing point, the posterior variance, and the level of change in the spreading process, and we assess how the characteristics of the epidemic spread and infection data influence this error bound. We present examples that use GPR to model and predict epidemic spread by using real-world infection data gathered in the UK during the COVID-19 epidemic. These examples illustrate that, under typical conditions, the prediction for the next twenty days has 94.29% of the noisy data located within the 95% confidence interval, validating these predictions. We further compare the modeling and prediction results with other methods, such as polynomial regression, k-nearest neighbors (KNN) regression, and neural networks, to demonstrate the benefits of leveraging GPR in disease spread modeling.</description><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2024.3517457</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Diseases ; Epidemic Modeling ; Epidemic Prediction ; Epidemics ; Error Bound ; Gaussian process regression ; Gaussian processes ; Kernel ; Noise ; Noise measurement ; Predictive models ; Testing ; Training</subject><ispartof>IEEE control systems letters, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3991-1680 ; 0000-0002-4095-7320 ; 0000-0003-1504-1967 ; 0000-0001-6349-5774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10798625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>She, Baike</creatorcontrib><creatorcontrib>Xin, Lei</creatorcontrib><creatorcontrib>Pare, Philip E.</creatorcontrib><creatorcontrib>Hale, Matthew</creatorcontrib><title>Modeling Epidemic Spread: A Gaussian Process Regression Approach</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Modeling epidemic spread is critical for informing policy decisions aimed at mitigation. Accordingly, in this work we present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread through the difference on the logarithmic scale of the infected cases. We bound the variance of the predictions made by GPR, which quantifies the impact of epidemic data on the proposed model. Next, we derive a high-probability error bound on the prediction error in terms of the distance between the training points and a testing point, the posterior variance, and the level of change in the spreading process, and we assess how the characteristics of the epidemic spread and infection data influence this error bound. We present examples that use GPR to model and predict epidemic spread by using real-world infection data gathered in the UK during the COVID-19 epidemic. These examples illustrate that, under typical conditions, the prediction for the next twenty days has 94.29% of the noisy data located within the 95% confidence interval, validating these predictions. We further compare the modeling and prediction results with other methods, such as polynomial regression, k-nearest neighbors (KNN) regression, and neural networks, to demonstrate the benefits of leveraging GPR in disease spread modeling.</description><subject>Data models</subject><subject>Diseases</subject><subject>Epidemic Modeling</subject><subject>Epidemic Prediction</subject><subject>Epidemics</subject><subject>Error Bound</subject><subject>Gaussian process regression</subject><subject>Gaussian processes</subject><subject>Kernel</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Predictive models</subject><subject>Testing</subject><subject>Training</subject><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFycEKgjAYAOARBEn5AtFhL6Bt0zntlIjVoSCySycZ-mcLdWOjQ29fh-6dvsOH0JKSkFKSrY9FdatCRlgcRpyKmIsJ8lgseEBjnsyQ79yTEEJTJgjLPLQ96RZ6NXa4NKqFQTW4MhZku8E53suXc0qO-Gx1A87hC3T2q9Ijzo2xWjaPBZreZe_A_zlHq115LQ6BAoDaWDVI-64pEVmaMB796Q_93TjY</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>She, Baike</creator><creator>Xin, Lei</creator><creator>Pare, Philip E.</creator><creator>Hale, Matthew</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-3991-1680</orcidid><orcidid>https://orcid.org/0000-0002-4095-7320</orcidid><orcidid>https://orcid.org/0000-0003-1504-1967</orcidid><orcidid>https://orcid.org/0000-0001-6349-5774</orcidid></search><sort><creationdate>20241212</creationdate><title>Modeling Epidemic Spread: A Gaussian Process Regression Approach</title><author>She, Baike ; Xin, Lei ; Pare, Philip E. ; Hale, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107986253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Diseases</topic><topic>Epidemic Modeling</topic><topic>Epidemic Prediction</topic><topic>Epidemics</topic><topic>Error Bound</topic><topic>Gaussian process regression</topic><topic>Gaussian processes</topic><topic>Kernel</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Predictive models</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>She, Baike</creatorcontrib><creatorcontrib>Xin, Lei</creatorcontrib><creatorcontrib>Pare, Philip E.</creatorcontrib><creatorcontrib>Hale, Matthew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>She, Baike</au><au>Xin, Lei</au><au>Pare, Philip E.</au><au>Hale, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Epidemic Spread: A Gaussian Process Regression Approach</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2024-12-12</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Modeling epidemic spread is critical for informing policy decisions aimed at mitigation. Accordingly, in this work we present a new data-driven method based on Gaussian process regression (GPR) to model epidemic spread through the difference on the logarithmic scale of the infected cases. We bound the variance of the predictions made by GPR, which quantifies the impact of epidemic data on the proposed model. Next, we derive a high-probability error bound on the prediction error in terms of the distance between the training points and a testing point, the posterior variance, and the level of change in the spreading process, and we assess how the characteristics of the epidemic spread and infection data influence this error bound. We present examples that use GPR to model and predict epidemic spread by using real-world infection data gathered in the UK during the COVID-19 epidemic. These examples illustrate that, under typical conditions, the prediction for the next twenty days has 94.29% of the noisy data located within the 95% confidence interval, validating these predictions. We further compare the modeling and prediction results with other methods, such as polynomial regression, k-nearest neighbors (KNN) regression, and neural networks, to demonstrate the benefits of leveraging GPR in disease spread modeling.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2024.3517457</doi><orcidid>https://orcid.org/0000-0003-3991-1680</orcidid><orcidid>https://orcid.org/0000-0002-4095-7320</orcidid><orcidid>https://orcid.org/0000-0003-1504-1967</orcidid><orcidid>https://orcid.org/0000-0001-6349-5774</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2475-1456
ispartof IEEE control systems letters, 2024-12, p.1-1
issn 2475-1456
language eng
recordid cdi_ieee_primary_10798625
source IEEE Electronic Library (IEL)
subjects Data models
Diseases
Epidemic Modeling
Epidemic Prediction
Epidemics
Error Bound
Gaussian process regression
Gaussian processes
Kernel
Noise
Noise measurement
Predictive models
Testing
Training
title Modeling Epidemic Spread: A Gaussian Process Regression Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Epidemic%20Spread:%20A%20Gaussian%20Process%20Regression%20Approach&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=She,%20Baike&rft.date=2024-12-12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2024.3517457&rft_dat=%3Cieee_RIE%3E10798625%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798625&rfr_iscdi=true