EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles

As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2025, p.1-1
Hauptverfasser: Xun, Yijie, Dong, Hao, Ma, Xiaochuan, Mao, Bomin, Guo, Hongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE internet of things journal
container_volume
creator Xun, Yijie
Dong, Hao
Ma, Xiaochuan
Mao, Bomin
Guo, Hongzhi
description As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.
doi_str_mv 10.1109/JIOT.2024.3507014
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10798622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798622</ieee_id><sourcerecordid>10_1109_JIOT_2024_3507014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632-10d7a0f460e375ab7602aee8e1ce472a8b66fa5e434aa0d99d1c961c48e3aab23</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNQ-gOAiL5B65yczibsSo1YCKRK6DdPJjR1pMjLTLvr2NrRCV_dwOd9ZfIQ8UphTCtnz57Kq5wyYmPMEFFBxQyaMMxULKdntVb4nsxB-AOCEJTSTE1IX61Vc5tVLVNrXxVec6x69jqrW9bj3x6gYtnowdviO1ri1ZofRygW7t24Yf53z0eKwd4Pr3SH8V8IDuev0LuDscqekfivq_CMuq_dlvihjIzmLKbRKQyckIFeJ3igJTCOmSA0KxXS6kbLTCQoutIY2y1pqMkmNSJFrvWF8Suh51ngXgseu-fW21_7YUGhGMc0ophnFNBcxJ-bpzFhEvOqrLJWM8T9XlV7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</title><source>IEEE Xplore</source><creator>Xun, Yijie ; Dong, Hao ; Ma, Xiaochuan ; Mao, Bomin ; Guo, Hongzhi</creator><creatorcontrib>Xun, Yijie ; Dong, Hao ; Ma, Xiaochuan ; Mao, Bomin ; Guo, Hongzhi</creatorcontrib><description>As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3507014</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Autonomous Navigation ; Cameras ; Feature extraction ; Global navigation satellite system ; Internet of Things ; Internet of Vehicle ; Laser radar ; LiDAR-Camera Odometry ; Liquid crystal on silicon ; Odometry ; Point cloud compression ; Sensor Fusion ; Sensors ; Vehicle Positioning</subject><ispartof>IEEE internet of things journal, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-0163-1686 ; 0000-0001-7780-5972 ; 0000-0002-5540-2651 ; 0000-0002-2503-2784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10798622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xun, Yijie</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Ma, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Guo, Hongzhi</creatorcontrib><title>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.</description><subject>Accuracy</subject><subject>Autonomous Navigation</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>Internet of Things</subject><subject>Internet of Vehicle</subject><subject>Laser radar</subject><subject>LiDAR-Camera Odometry</subject><subject>Liquid crystal on silicon</subject><subject>Odometry</subject><subject>Point cloud compression</subject><subject>Sensor Fusion</subject><subject>Sensors</subject><subject>Vehicle Positioning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsNQ-gOAiL5B65yczibsSo1YCKRK6DdPJjR1pMjLTLvr2NrRCV_dwOd9ZfIQ8UphTCtnz57Kq5wyYmPMEFFBxQyaMMxULKdntVb4nsxB-AOCEJTSTE1IX61Vc5tVLVNrXxVec6x69jqrW9bj3x6gYtnowdviO1ri1ZofRygW7t24Yf53z0eKwd4Pr3SH8V8IDuev0LuDscqekfivq_CMuq_dlvihjIzmLKbRKQyckIFeJ3igJTCOmSA0KxXS6kbLTCQoutIY2y1pqMkmNSJFrvWF8Suh51ngXgseu-fW21_7YUGhGMc0ophnFNBcxJ-bpzFhEvOqrLJWM8T9XlV7A</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Xun, Yijie</creator><creator>Dong, Hao</creator><creator>Ma, Xiaochuan</creator><creator>Mao, Bomin</creator><creator>Guo, Hongzhi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-0163-1686</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid><orcidid>https://orcid.org/0000-0002-5540-2651</orcidid><orcidid>https://orcid.org/0000-0002-2503-2784</orcidid></search><sort><creationdate>2025</creationdate><title>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</title><author>Xun, Yijie ; Dong, Hao ; Ma, Xiaochuan ; Mao, Bomin ; Guo, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632-10d7a0f460e375ab7602aee8e1ce472a8b66fa5e434aa0d99d1c961c48e3aab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Autonomous Navigation</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>Internet of Things</topic><topic>Internet of Vehicle</topic><topic>Laser radar</topic><topic>LiDAR-Camera Odometry</topic><topic>Liquid crystal on silicon</topic><topic>Odometry</topic><topic>Point cloud compression</topic><topic>Sensor Fusion</topic><topic>Sensors</topic><topic>Vehicle Positioning</topic><toplevel>online_resources</toplevel><creatorcontrib>Xun, Yijie</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Ma, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Guo, Hongzhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xun, Yijie</au><au>Dong, Hao</au><au>Ma, Xiaochuan</au><au>Mao, Bomin</au><au>Guo, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3507014</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-0163-1686</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid><orcidid>https://orcid.org/0000-0002-5540-2651</orcidid><orcidid>https://orcid.org/0000-0002-2503-2784</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2025, p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10798622
source IEEE Xplore
subjects Accuracy
Autonomous Navigation
Cameras
Feature extraction
Global navigation satellite system
Internet of Things
Internet of Vehicle
Laser radar
LiDAR-Camera Odometry
Liquid crystal on silicon
Odometry
Point cloud compression
Sensor Fusion
Sensors
Vehicle Positioning
title EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVP-LCO:%20LiDAR-Camera%20Odometry%20Enhancing%20Vehicle%20Positioning%20for%20Autonomous%20Vehicles&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Xun,%20Yijie&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3507014&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2024_3507014%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798622&rfr_iscdi=true