EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles
As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2025, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | |
creator | Xun, Yijie Dong, Hao Ma, Xiaochuan Mao, Bomin Guo, Hongzhi |
description | As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy. |
doi_str_mv | 10.1109/JIOT.2024.3507014 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10798622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798622</ieee_id><sourcerecordid>10_1109_JIOT_2024_3507014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632-10d7a0f460e375ab7602aee8e1ce472a8b66fa5e434aa0d99d1c961c48e3aab23</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNQ-gOAiL5B65yczibsSo1YCKRK6DdPJjR1pMjLTLvr2NrRCV_dwOd9ZfIQ8UphTCtnz57Kq5wyYmPMEFFBxQyaMMxULKdntVb4nsxB-AOCEJTSTE1IX61Vc5tVLVNrXxVec6x69jqrW9bj3x6gYtnowdviO1ri1ZofRygW7t24Yf53z0eKwd4Pr3SH8V8IDuev0LuDscqekfivq_CMuq_dlvihjIzmLKbRKQyckIFeJ3igJTCOmSA0KxXS6kbLTCQoutIY2y1pqMkmNSJFrvWF8Suh51ngXgseu-fW21_7YUGhGMc0ophnFNBcxJ-bpzFhEvOqrLJWM8T9XlV7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</title><source>IEEE Xplore</source><creator>Xun, Yijie ; Dong, Hao ; Ma, Xiaochuan ; Mao, Bomin ; Guo, Hongzhi</creator><creatorcontrib>Xun, Yijie ; Dong, Hao ; Ma, Xiaochuan ; Mao, Bomin ; Guo, Hongzhi</creatorcontrib><description>As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3507014</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Autonomous Navigation ; Cameras ; Feature extraction ; Global navigation satellite system ; Internet of Things ; Internet of Vehicle ; Laser radar ; LiDAR-Camera Odometry ; Liquid crystal on silicon ; Odometry ; Point cloud compression ; Sensor Fusion ; Sensors ; Vehicle Positioning</subject><ispartof>IEEE internet of things journal, 2025, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-0163-1686 ; 0000-0001-7780-5972 ; 0000-0002-5540-2651 ; 0000-0002-2503-2784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798622$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10798622$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xun, Yijie</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Ma, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Guo, Hongzhi</creatorcontrib><title>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.</description><subject>Accuracy</subject><subject>Autonomous Navigation</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>Internet of Things</subject><subject>Internet of Vehicle</subject><subject>Laser radar</subject><subject>LiDAR-Camera Odometry</subject><subject>Liquid crystal on silicon</subject><subject>Odometry</subject><subject>Point cloud compression</subject><subject>Sensor Fusion</subject><subject>Sensors</subject><subject>Vehicle Positioning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsNQ-gOAiL5B65yczibsSo1YCKRK6DdPJjR1pMjLTLvr2NrRCV_dwOd9ZfIQ8UphTCtnz57Kq5wyYmPMEFFBxQyaMMxULKdntVb4nsxB-AOCEJTSTE1IX61Vc5tVLVNrXxVec6x69jqrW9bj3x6gYtnowdviO1ri1ZofRygW7t24Yf53z0eKwd4Pr3SH8V8IDuev0LuDscqekfivq_CMuq_dlvihjIzmLKbRKQyckIFeJ3igJTCOmSA0KxXS6kbLTCQoutIY2y1pqMkmNSJFrvWF8Suh51ngXgseu-fW21_7YUGhGMc0ophnFNBcxJ-bpzFhEvOqrLJWM8T9XlV7A</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Xun, Yijie</creator><creator>Dong, Hao</creator><creator>Ma, Xiaochuan</creator><creator>Mao, Bomin</creator><creator>Guo, Hongzhi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-0163-1686</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid><orcidid>https://orcid.org/0000-0002-5540-2651</orcidid><orcidid>https://orcid.org/0000-0002-2503-2784</orcidid></search><sort><creationdate>2025</creationdate><title>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</title><author>Xun, Yijie ; Dong, Hao ; Ma, Xiaochuan ; Mao, Bomin ; Guo, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632-10d7a0f460e375ab7602aee8e1ce472a8b66fa5e434aa0d99d1c961c48e3aab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Autonomous Navigation</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>Internet of Things</topic><topic>Internet of Vehicle</topic><topic>Laser radar</topic><topic>LiDAR-Camera Odometry</topic><topic>Liquid crystal on silicon</topic><topic>Odometry</topic><topic>Point cloud compression</topic><topic>Sensor Fusion</topic><topic>Sensors</topic><topic>Vehicle Positioning</topic><toplevel>online_resources</toplevel><creatorcontrib>Xun, Yijie</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Ma, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Bomin</creatorcontrib><creatorcontrib>Guo, Hongzhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xun, Yijie</au><au>Dong, Hao</au><au>Ma, Xiaochuan</au><au>Mao, Bomin</au><au>Guo, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>As an emerging application of the Internet of Things (IoT), Autonomous Vehicles (AVs) has attracted widespread attention from scholars. Accurate vehicle positioning is crucial for AVs to navigate safely and efficiently. Among the key components of positioning systems, odometry plays a vital role in tracking the vehicle's movement, especially when GPS is unavailable. Traditional single-modal odometry methods, which rely solely on either LiDAR or cameras, often experience limited accuracy in challenging environmental or weather conditions. Therefore, some researchers proposed a idea of combining information from both LiDAR and cameras, called LiDAR-Camera Odometry (LCO). However, the existing LCO methods face issues like insufficient data integration or complexity in system structure. To address these challenges, we propose a novel LiDAR-camera odometry method named EVP-LCO, which enhances the sparse features from LiDAR by pseudo-LiDAR. In our method, we use a data augmentation module to enrich the details of LiDAR point cloud. Furthermore, we devise a feature regrouping strategy in two-step Levenberg-Marquardt (LM) optimization process to estimate accurate pose and reconstruct colorful global map. The results on the KITTI Odometry dataset show that EVP-LCO significantly improves vehicle positioning accuracy.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3507014</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-0163-1686</orcidid><orcidid>https://orcid.org/0000-0001-7780-5972</orcidid><orcidid>https://orcid.org/0000-0002-5540-2651</orcidid><orcidid>https://orcid.org/0000-0002-2503-2784</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2025, p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10798622 |
source | IEEE Xplore |
subjects | Accuracy Autonomous Navigation Cameras Feature extraction Global navigation satellite system Internet of Things Internet of Vehicle Laser radar LiDAR-Camera Odometry Liquid crystal on silicon Odometry Point cloud compression Sensor Fusion Sensors Vehicle Positioning |
title | EVP-LCO: LiDAR-Camera Odometry Enhancing Vehicle Positioning for Autonomous Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVP-LCO:%20LiDAR-Camera%20Odometry%20Enhancing%20Vehicle%20Positioning%20for%20Autonomous%20Vehicles&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Xun,%20Yijie&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3507014&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2024_3507014%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798622&rfr_iscdi=true |