Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer

Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.194133-194149
1. Verfasser: Hu, Xinyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194149
container_issue
container_start_page 194133
container_title IEEE access
container_volume 12
creator Hu, Xinyang
description Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.
doi_str_mv 10.1109/ACCESS.2024.3517144
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10798114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798114</ieee_id><doaj_id>oai_doaj_org_article_3047a43c5c0a407e8baeded1e42d8180</doaj_id><sourcerecordid>3149094373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a5ed2caa4ba4a95bf989f48ceb1ec6a38e20e4a46d07a72d80cfe48338a996d93</originalsourceid><addsrcrecordid>eNpNUcFKw0AQDaKgqF-ghwXPrbvZTbLrTYrVQqVCKx6X6WZitzTZOJse9OtNjYhzmeHNe28GXpJcCT4Wgpvb-8nkYbkcpzxVY5mJQih1lJylIjcjmcn8-N98mlzGuOV96R7KirOkekPoNkjsZYNNqLEB9hwa3wXyzfsdW7Sdr_1XP7Nl2AGxGRGUHhqHbBoIHcTusHzz3YatsG4DwY5N99GHhq0ImlgFqpEukpMKdhEvf_t58jp9WE2eRvPF42xyPx-5VJtuBBmWqQNQa1BgsnVltKmUdrgW6HKQGlOOClRe8gKKtNTcVai0lBqMyUsjz5PZ4FsG2NqWfA30aQN4-wMEerdAnXc7tJKrApR0meOgeIF6DVhiKVD1vkLz3utm8GopfOwxdnYb9tT071splOFGyUL2LDmwHIUYCau_q4LbQz52yMce8rG_-fSq60HlEfGfojBaCCW_AXZmjeI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149094373</pqid></control><display><type>article</type><title>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Xinyang</creator><creatorcontrib>Hu, Xinyang</creatorcontrib><description>Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3517144</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Climate change ; Datasets ; Decomposition ; Deep learning ; Electricity ; Encoders-Decoders ; energy forecasting ; Forecasting ; Irradiance ; Load modeling ; Meteorological data ; Predictive models ; Renewable energy ; Renewable energy sources ; Sequences ; Solar irradiance ; solar irradiance forecasting ; Solar radiation ; temporal fusion transformers (TFT) ; Thin film transistors ; Transformers ; Weather forecasting</subject><ispartof>IEEE access, 2024, Vol.12, p.194133-194149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-a5ed2caa4ba4a95bf989f48ceb1ec6a38e20e4a46d07a72d80cfe48338a996d93</cites><orcidid>0009-0004-3723-238X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798114$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hu, Xinyang</creatorcontrib><title>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</title><title>IEEE access</title><addtitle>Access</addtitle><description>Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.</description><subject>Accuracy</subject><subject>Climate change</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Electricity</subject><subject>Encoders-Decoders</subject><subject>energy forecasting</subject><subject>Forecasting</subject><subject>Irradiance</subject><subject>Load modeling</subject><subject>Meteorological data</subject><subject>Predictive models</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Sequences</subject><subject>Solar irradiance</subject><subject>solar irradiance forecasting</subject><subject>Solar radiation</subject><subject>temporal fusion transformers (TFT)</subject><subject>Thin film transistors</subject><subject>Transformers</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKw0AQDaKgqF-ghwXPrbvZTbLrTYrVQqVCKx6X6WZitzTZOJse9OtNjYhzmeHNe28GXpJcCT4Wgpvb-8nkYbkcpzxVY5mJQih1lJylIjcjmcn8-N98mlzGuOV96R7KirOkekPoNkjsZYNNqLEB9hwa3wXyzfsdW7Sdr_1XP7Nl2AGxGRGUHhqHbBoIHcTusHzz3YatsG4DwY5N99GHhq0ImlgFqpEukpMKdhEvf_t58jp9WE2eRvPF42xyPx-5VJtuBBmWqQNQa1BgsnVltKmUdrgW6HKQGlOOClRe8gKKtNTcVai0lBqMyUsjz5PZ4FsG2NqWfA30aQN4-wMEerdAnXc7tJKrApR0meOgeIF6DVhiKVD1vkLz3utm8GopfOwxdnYb9tT071splOFGyUL2LDmwHIUYCau_q4LbQz52yMce8rG_-fSq60HlEfGfojBaCCW_AXZmjeI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hu, Xinyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-3723-238X</orcidid></search><sort><creationdate>2024</creationdate><title>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</title><author>Hu, Xinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a5ed2caa4ba4a95bf989f48ceb1ec6a38e20e4a46d07a72d80cfe48338a996d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Climate change</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Electricity</topic><topic>Encoders-Decoders</topic><topic>energy forecasting</topic><topic>Forecasting</topic><topic>Irradiance</topic><topic>Load modeling</topic><topic>Meteorological data</topic><topic>Predictive models</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Sequences</topic><topic>Solar irradiance</topic><topic>solar irradiance forecasting</topic><topic>Solar radiation</topic><topic>temporal fusion transformers (TFT)</topic><topic>Thin film transistors</topic><topic>Transformers</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xinyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>194133</spage><epage>194149</epage><pages>194133-194149</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3517144</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0004-3723-238X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.194133-194149
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10798114
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Climate change
Datasets
Decomposition
Deep learning
Electricity
Encoders-Decoders
energy forecasting
Forecasting
Irradiance
Load modeling
Meteorological data
Predictive models
Renewable energy
Renewable energy sources
Sequences
Solar irradiance
solar irradiance forecasting
Solar radiation
temporal fusion transformers (TFT)
Thin film transistors
Transformers
Weather forecasting
title Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weather%20Phenomena%20Monitoring:%20Optimizing%20Solar%20Irradiance%20Forecasting%20With%20Temporal%20Fusion%20Transformer&rft.jtitle=IEEE%20access&rft.au=Hu,%20Xinyang&rft.date=2024&rft.volume=12&rft.spage=194133&rft.epage=194149&rft.pages=194133-194149&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3517144&rft_dat=%3Cproquest_ieee_%3E3149094373%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149094373&rft_id=info:pmid/&rft_ieee_id=10798114&rft_doaj_id=oai_doaj_org_article_3047a43c5c0a407e8baeded1e42d8180&rfr_iscdi=true