Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer
Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based model...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.194133-194149 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194149 |
---|---|
container_issue | |
container_start_page | 194133 |
container_title | IEEE access |
container_volume | 12 |
creator | Hu, Xinyang |
description | Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT. |
doi_str_mv | 10.1109/ACCESS.2024.3517144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10798114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798114</ieee_id><doaj_id>oai_doaj_org_article_3047a43c5c0a407e8baeded1e42d8180</doaj_id><sourcerecordid>3149094373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a5ed2caa4ba4a95bf989f48ceb1ec6a38e20e4a46d07a72d80cfe48338a996d93</originalsourceid><addsrcrecordid>eNpNUcFKw0AQDaKgqF-ghwXPrbvZTbLrTYrVQqVCKx6X6WZitzTZOJse9OtNjYhzmeHNe28GXpJcCT4Wgpvb-8nkYbkcpzxVY5mJQih1lJylIjcjmcn8-N98mlzGuOV96R7KirOkekPoNkjsZYNNqLEB9hwa3wXyzfsdW7Sdr_1XP7Nl2AGxGRGUHhqHbBoIHcTusHzz3YatsG4DwY5N99GHhq0ImlgFqpEukpMKdhEvf_t58jp9WE2eRvPF42xyPx-5VJtuBBmWqQNQa1BgsnVltKmUdrgW6HKQGlOOClRe8gKKtNTcVai0lBqMyUsjz5PZ4FsG2NqWfA30aQN4-wMEerdAnXc7tJKrApR0meOgeIF6DVhiKVD1vkLz3utm8GopfOwxdnYb9tT071splOFGyUL2LDmwHIUYCau_q4LbQz52yMce8rG_-fSq60HlEfGfojBaCCW_AXZmjeI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149094373</pqid></control><display><type>article</type><title>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Xinyang</creator><creatorcontrib>Hu, Xinyang</creatorcontrib><description>Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3517144</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Climate change ; Datasets ; Decomposition ; Deep learning ; Electricity ; Encoders-Decoders ; energy forecasting ; Forecasting ; Irradiance ; Load modeling ; Meteorological data ; Predictive models ; Renewable energy ; Renewable energy sources ; Sequences ; Solar irradiance ; solar irradiance forecasting ; Solar radiation ; temporal fusion transformers (TFT) ; Thin film transistors ; Transformers ; Weather forecasting</subject><ispartof>IEEE access, 2024, Vol.12, p.194133-194149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-a5ed2caa4ba4a95bf989f48ceb1ec6a38e20e4a46d07a72d80cfe48338a996d93</cites><orcidid>0009-0004-3723-238X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798114$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hu, Xinyang</creatorcontrib><title>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</title><title>IEEE access</title><addtitle>Access</addtitle><description>Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.</description><subject>Accuracy</subject><subject>Climate change</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Electricity</subject><subject>Encoders-Decoders</subject><subject>energy forecasting</subject><subject>Forecasting</subject><subject>Irradiance</subject><subject>Load modeling</subject><subject>Meteorological data</subject><subject>Predictive models</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Sequences</subject><subject>Solar irradiance</subject><subject>solar irradiance forecasting</subject><subject>Solar radiation</subject><subject>temporal fusion transformers (TFT)</subject><subject>Thin film transistors</subject><subject>Transformers</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKw0AQDaKgqF-ghwXPrbvZTbLrTYrVQqVCKx6X6WZitzTZOJse9OtNjYhzmeHNe28GXpJcCT4Wgpvb-8nkYbkcpzxVY5mJQih1lJylIjcjmcn8-N98mlzGuOV96R7KirOkekPoNkjsZYNNqLEB9hwa3wXyzfsdW7Sdr_1XP7Nl2AGxGRGUHhqHbBoIHcTusHzz3YatsG4DwY5N99GHhq0ImlgFqpEukpMKdhEvf_t58jp9WE2eRvPF42xyPx-5VJtuBBmWqQNQa1BgsnVltKmUdrgW6HKQGlOOClRe8gKKtNTcVai0lBqMyUsjz5PZ4FsG2NqWfA30aQN4-wMEerdAnXc7tJKrApR0meOgeIF6DVhiKVD1vkLz3utm8GopfOwxdnYb9tT071splOFGyUL2LDmwHIUYCau_q4LbQz52yMce8rG_-fSq60HlEfGfojBaCCW_AXZmjeI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hu, Xinyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-3723-238X</orcidid></search><sort><creationdate>2024</creationdate><title>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</title><author>Hu, Xinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a5ed2caa4ba4a95bf989f48ceb1ec6a38e20e4a46d07a72d80cfe48338a996d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Climate change</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Electricity</topic><topic>Encoders-Decoders</topic><topic>energy forecasting</topic><topic>Forecasting</topic><topic>Irradiance</topic><topic>Load modeling</topic><topic>Meteorological data</topic><topic>Predictive models</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Sequences</topic><topic>Solar irradiance</topic><topic>solar irradiance forecasting</topic><topic>Solar radiation</topic><topic>temporal fusion transformers (TFT)</topic><topic>Thin film transistors</topic><topic>Transformers</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xinyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>194133</spage><epage>194149</epage><pages>194133-194149</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Global climate change has spurred the search for renewable energy sources, with solar power being a cost-effective option for electricity generation. Accurate energy generation forecasting is crucial for efficient usage planning. While various techniques have been introduced, transformer-based models are effective for capturing long-range dependencies in data. This study proposes an hour-ahead solar irradiance (SI) forecasting framework based on variational mode decomposition (VMD) for handling the meteorological data and modified temporal fusion transformers (TFT) for forecasting solar irradiance. The proposed model decomposes the raw solar irradiance sequence into intrinsic mode functions using VMD and optimizes the TFT using the variable screening network and GRU-based encoder-decoder. The resulting deep learning model provides interpretable outputs such as importance ordering of solar irradiance sub-sequences, and multi-head attention analysis of different forecasting window sizes. Empirical study shows that transformers have high performance on the long-term dependencies as compared to other time series models such as ANN and LSTM. On the e National Solar Radiation USA SI dataset, the proposed TFT achieved an MAE of 19.29 and an R2 of 0.992 for a one-hour ahead forecast, while on the Pakistan SI dataset, it achieved an 11.46% reduction in MAE and a 7.12% improvement in MSE compared to the original TFT.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3517144</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0004-3723-238X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.194133-194149 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10798114 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Climate change Datasets Decomposition Deep learning Electricity Encoders-Decoders energy forecasting Forecasting Irradiance Load modeling Meteorological data Predictive models Renewable energy Renewable energy sources Sequences Solar irradiance solar irradiance forecasting Solar radiation temporal fusion transformers (TFT) Thin film transistors Transformers Weather forecasting |
title | Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weather%20Phenomena%20Monitoring:%20Optimizing%20Solar%20Irradiance%20Forecasting%20With%20Temporal%20Fusion%20Transformer&rft.jtitle=IEEE%20access&rft.au=Hu,%20Xinyang&rft.date=2024&rft.volume=12&rft.spage=194133&rft.epage=194149&rft.pages=194133-194149&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3517144&rft_dat=%3Cproquest_ieee_%3E3149094373%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149094373&rft_id=info:pmid/&rft_ieee_id=10798114&rft_doaj_id=oai_doaj_org_article_3047a43c5c0a407e8baeded1e42d8180&rfr_iscdi=true |