Comprehensive Attribute Difference Attention Network for Remote Sensing Image Semantic Understanding

In the task of semantic understanding of remote sensing images, most current research focuses on learning contextual information through attention mechanisms or multiple inductive biases. However, these methods are limited in capturing fine-grained differences within the same attribute, are suscepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2025, p.1-1
Hauptverfasser: Li, Zhengpeng, Hu, Jun, Wu, Kunyang, Miao, Jiawei, Wu, Jiansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume
creator Li, Zhengpeng
Hu, Jun
Wu, Kunyang
Miao, Jiawei
Wu, Jiansheng
description In the task of semantic understanding of remote sensing images, most current research focuses on learning contextual information through attention mechanisms or multiple inductive biases. However, these methods are limited in capturing fine-grained differences within the same attribute, are susceptible to background noise interference, and lack effective modeling capabilities for spatial relationships and long-range dependencies between different remote sensing attributes. To address these issues, we specifically focus on the homogenous and heterogenous differences between attributes in remote sensing images. Thus, we propose an innovative comprehensive attribute difference attention network (CADANet) to enhance the performance of understanding remote sensing images. Specifically, we design two key modules: the attribute feature aggregation (AFA) module and the context attribute-aware spatial attention (CAASA) module. The AFA module primarily focuses on global and local domain attribute modeling, reducing the impact of homogenous attribute differences through fine-grained feature extraction and global context information. The CAASA module integrates pixel-level global background information and relative position priors, employing a self-attention mechanism to capture long-range dependencies, thus addressing heterogenous attribute differences. Extensive experimental results conducted on the widely-used Vaihingen, Potsdam and WHDLD datasets effectively demonstrate that our proposed method outperforms other recent approaches in performance. Our code is available at https://github.com/lzp-lkd/CADANet.
doi_str_mv 10.1109/TGRS.2024.3516501
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10795154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10795154</ieee_id><sourcerecordid>10_1109_TGRS_2024_3516501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-79f15a0001265061c5a1b32d33696783c23f99efd5f79ed226092ba28bae8bc23</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgc8gItcdKkzXEaMCZNIG3jXKWtMwo0nZIC4u1J2Q6cLPv_f8v-CLkGlgIwfbtdrDcpZzxLhQQlGZyQCUhZJExl2SmZMNAq4YXm5-QihDfGIJOQT0gz77u9x1d0of1COhsG31afA9K71lr06Oq_Ibqh7R19wuG79-_U9p6useujbzMm3Y4uO7Mbu85Ea01fXIM-DMY1UbwkZ9Z8BLw61inZPtxv54_J6nmxnM9WSa1EluTagjQsnsbjAwpqaaASvBFCaZUXoubCao22kTbX2HCumOaV4UVlsKiiOiVwWFv7PgSPttz7tjP-pwRWjpTKkVI5UiqPlGLm5pBpEfGfP9cSZCZ-AU0PZPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive Attribute Difference Attention Network for Remote Sensing Image Semantic Understanding</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhengpeng ; Hu, Jun ; Wu, Kunyang ; Miao, Jiawei ; Wu, Jiansheng</creator><creatorcontrib>Li, Zhengpeng ; Hu, Jun ; Wu, Kunyang ; Miao, Jiawei ; Wu, Jiansheng</creatorcontrib><description>In the task of semantic understanding of remote sensing images, most current research focuses on learning contextual information through attention mechanisms or multiple inductive biases. However, these methods are limited in capturing fine-grained differences within the same attribute, are susceptible to background noise interference, and lack effective modeling capabilities for spatial relationships and long-range dependencies between different remote sensing attributes. To address these issues, we specifically focus on the homogenous and heterogenous differences between attributes in remote sensing images. Thus, we propose an innovative comprehensive attribute difference attention network (CADANet) to enhance the performance of understanding remote sensing images. Specifically, we design two key modules: the attribute feature aggregation (AFA) module and the context attribute-aware spatial attention (CAASA) module. The AFA module primarily focuses on global and local domain attribute modeling, reducing the impact of homogenous attribute differences through fine-grained feature extraction and global context information. The CAASA module integrates pixel-level global background information and relative position priors, employing a self-attention mechanism to capture long-range dependencies, thus addressing heterogenous attribute differences. Extensive experimental results conducted on the widely-used Vaihingen, Potsdam and WHDLD datasets effectively demonstrate that our proposed method outperforms other recent approaches in performance. Our code is available at https://github.com/lzp-lkd/CADANet.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3516501</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention mechanism ; Attribute perception ; Automobiles ; Buildings ; Context modeling ; Data mining ; Feature extraction ; Interference ; Land surface ; Multi-attribute scene understanding ; Remote sensing ; Semantics ; Transformers</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2025, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8345-1592 ; 0009-0003-8557-5873 ; 0009-0006-1595-356X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10795154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10795154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhengpeng</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Wu, Kunyang</creatorcontrib><creatorcontrib>Miao, Jiawei</creatorcontrib><creatorcontrib>Wu, Jiansheng</creatorcontrib><title>Comprehensive Attribute Difference Attention Network for Remote Sensing Image Semantic Understanding</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In the task of semantic understanding of remote sensing images, most current research focuses on learning contextual information through attention mechanisms or multiple inductive biases. However, these methods are limited in capturing fine-grained differences within the same attribute, are susceptible to background noise interference, and lack effective modeling capabilities for spatial relationships and long-range dependencies between different remote sensing attributes. To address these issues, we specifically focus on the homogenous and heterogenous differences between attributes in remote sensing images. Thus, we propose an innovative comprehensive attribute difference attention network (CADANet) to enhance the performance of understanding remote sensing images. Specifically, we design two key modules: the attribute feature aggregation (AFA) module and the context attribute-aware spatial attention (CAASA) module. The AFA module primarily focuses on global and local domain attribute modeling, reducing the impact of homogenous attribute differences through fine-grained feature extraction and global context information. The CAASA module integrates pixel-level global background information and relative position priors, employing a self-attention mechanism to capture long-range dependencies, thus addressing heterogenous attribute differences. Extensive experimental results conducted on the widely-used Vaihingen, Potsdam and WHDLD datasets effectively demonstrate that our proposed method outperforms other recent approaches in performance. Our code is available at https://github.com/lzp-lkd/CADANet.</description><subject>Attention mechanism</subject><subject>Attribute perception</subject><subject>Automobiles</subject><subject>Buildings</subject><subject>Context modeling</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Interference</subject><subject>Land surface</subject><subject>Multi-attribute scene understanding</subject><subject>Remote sensing</subject><subject>Semantics</subject><subject>Transformers</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEmPwAEgc8gItcdKkzXEaMCZNIG3jXKWtMwo0nZIC4u1J2Q6cLPv_f8v-CLkGlgIwfbtdrDcpZzxLhQQlGZyQCUhZJExl2SmZMNAq4YXm5-QihDfGIJOQT0gz77u9x1d0of1COhsG31afA9K71lr06Oq_Ibqh7R19wuG79-_U9p6useujbzMm3Y4uO7Mbu85Ea01fXIM-DMY1UbwkZ9Z8BLw61inZPtxv54_J6nmxnM9WSa1EluTagjQsnsbjAwpqaaASvBFCaZUXoubCao22kTbX2HCumOaV4UVlsKiiOiVwWFv7PgSPttz7tjP-pwRWjpTKkVI5UiqPlGLm5pBpEfGfP9cSZCZ-AU0PZPk</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Li, Zhengpeng</creator><creator>Hu, Jun</creator><creator>Wu, Kunyang</creator><creator>Miao, Jiawei</creator><creator>Wu, Jiansheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8345-1592</orcidid><orcidid>https://orcid.org/0009-0003-8557-5873</orcidid><orcidid>https://orcid.org/0009-0006-1595-356X</orcidid></search><sort><creationdate>2025</creationdate><title>Comprehensive Attribute Difference Attention Network for Remote Sensing Image Semantic Understanding</title><author>Li, Zhengpeng ; Hu, Jun ; Wu, Kunyang ; Miao, Jiawei ; Wu, Jiansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-79f15a0001265061c5a1b32d33696783c23f99efd5f79ed226092ba28bae8bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Attention mechanism</topic><topic>Attribute perception</topic><topic>Automobiles</topic><topic>Buildings</topic><topic>Context modeling</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Interference</topic><topic>Land surface</topic><topic>Multi-attribute scene understanding</topic><topic>Remote sensing</topic><topic>Semantics</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhengpeng</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Wu, Kunyang</creatorcontrib><creatorcontrib>Miao, Jiawei</creatorcontrib><creatorcontrib>Wu, Jiansheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhengpeng</au><au>Hu, Jun</au><au>Wu, Kunyang</au><au>Miao, Jiawei</au><au>Wu, Jiansheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Attribute Difference Attention Network for Remote Sensing Image Semantic Understanding</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In the task of semantic understanding of remote sensing images, most current research focuses on learning contextual information through attention mechanisms or multiple inductive biases. However, these methods are limited in capturing fine-grained differences within the same attribute, are susceptible to background noise interference, and lack effective modeling capabilities for spatial relationships and long-range dependencies between different remote sensing attributes. To address these issues, we specifically focus on the homogenous and heterogenous differences between attributes in remote sensing images. Thus, we propose an innovative comprehensive attribute difference attention network (CADANet) to enhance the performance of understanding remote sensing images. Specifically, we design two key modules: the attribute feature aggregation (AFA) module and the context attribute-aware spatial attention (CAASA) module. The AFA module primarily focuses on global and local domain attribute modeling, reducing the impact of homogenous attribute differences through fine-grained feature extraction and global context information. The CAASA module integrates pixel-level global background information and relative position priors, employing a self-attention mechanism to capture long-range dependencies, thus addressing heterogenous attribute differences. Extensive experimental results conducted on the widely-used Vaihingen, Potsdam and WHDLD datasets effectively demonstrate that our proposed method outperforms other recent approaches in performance. Our code is available at https://github.com/lzp-lkd/CADANet.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3516501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8345-1592</orcidid><orcidid>https://orcid.org/0009-0003-8557-5873</orcidid><orcidid>https://orcid.org/0009-0006-1595-356X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2025, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10795154
source IEEE Electronic Library (IEL)
subjects Attention mechanism
Attribute perception
Automobiles
Buildings
Context modeling
Data mining
Feature extraction
Interference
Land surface
Multi-attribute scene understanding
Remote sensing
Semantics
Transformers
title Comprehensive Attribute Difference Attention Network for Remote Sensing Image Semantic Understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Attribute%20Difference%20Attention%20Network%20for%20Remote%20Sensing%20Image%20Semantic%20Understanding&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Zhengpeng&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3516501&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3516501%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10795154&rfr_iscdi=true