An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG
Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three de...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2025, Vol.33, p.81-91 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 33 |
creator | Zhou, Yu Li, Jianfeng Zuo, Shiping Zhang, Jie Dong, Mingjie Sun, Zhongbo |
description | Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three degrees of freedom (DOFs) of AJC and its coupled motion, it becomes essential to accurately estimate the actively exerted torque under multi-DOF. This work introduces an estimation framework that includes the Hill-based sEMG-force model, the ankle musculoskeletal dynamic decoupling model, and the parameter identification-calibration strategy. The Hill-based sEMG-force model estimates the force generated by individual muscles involved in AJC; The parameter identification-calibration strategy combined with pre-experiment identifies unknown variables in the ankle musculoskeletal dynamic decoupling model; Finally, the musculoskeletal dynamic decoupling model relates the muscle forces to the AJC's actively exerted torque. The musculoskeletal dynamic decoupling model combines anatomical and biomechanical features, enabling parameters derived from a single DOF pre-experiment through identification-calibration strategy to be applicable in multi-DOF dynamic motion. To evaluate the estimation performance of the framework, experiments were conducted in various directions involving both single and multiple DOFs. The results show that the proposed framework can estimate the actively exerted torque with a normalized root mean square error (NRMSE) of {10}.{29}\% \pm {2}.{86}\% (mean ± SD) for torque estimation under a single DOF, and NRMSE of {11}.{35}\% \pm {4}.{51}\% under multiple DOFs, compared to the actual measured values. This framework can improve human-robot interaction training and improve the effectiveness of robot-assisted ankle rehabilitation training. It can also provide accurate neuro-information and joint torque data for medical teams, which can lead to early diagnosis of diseases and patient-specific treatment protocols. |
doi_str_mv | 10.1109/TNSRE.2024.3515966 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10793243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10793243</ieee_id><doaj_id>oai_doaj_org_article_2fae794cef994de293dc66c0ee2edb01</doaj_id><sourcerecordid>oai_doaj_org_article_2fae794cef994de293dc66c0ee2edb01</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1746-e53afaff56b1b1efb946ef54f02d49a6a7ed2c7cea77892d0fca0cf3d2366a9c3</originalsourceid><addsrcrecordid>eNpNkdtKAzEQhhdRsB5eQLzIC2zNaZPmstStCtaCttchm0xKdLvR7Lbat7cnxKsZ5uf_YPiy7IbgPiFY3c1e3l7LPsWU91lBCiXESdYjRTHIMSX4dLcznnNG8Xl20bbvGBMpCtnLvoYNmjZ1aACVbReWpgvNAo2TWcJ3TB_Ix4SGzUcNaGi7sIZ6g8ofSB04NIvpawVo3jhIaLKqu5DfT8doFFef9Ta-3zRmGSyaxC7EpkXrYFBbTh6usjNv6hauj_Mym4_L2egxf54-PI2Gz7klkoscCma88b4QFakI-EpxAb7gHlPHlRFGgqNWWjBSDhR12FuDrWeOMiGMsuwyezpwXTTv-jNtf0sbHU3Q-0NMC21SF2wNmnoDUnELXinugCrmrBAWA1BwFSZbFj2wbIptm8D_8QjWOwF6L0DvBOijgG3p9lAKAPCvIBWjnLFfpZaEQA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Yu ; Li, Jianfeng ; Zuo, Shiping ; Zhang, Jie ; Dong, Mingjie ; Sun, Zhongbo</creator><creatorcontrib>Zhou, Yu ; Li, Jianfeng ; Zuo, Shiping ; Zhang, Jie ; Dong, Mingjie ; Sun, Zhongbo</creatorcontrib><description><![CDATA[Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three degrees of freedom (DOFs) of AJC and its coupled motion, it becomes essential to accurately estimate the actively exerted torque under multi-DOF. This work introduces an estimation framework that includes the Hill-based sEMG-force model, the ankle musculoskeletal dynamic decoupling model, and the parameter identification-calibration strategy. The Hill-based sEMG-force model estimates the force generated by individual muscles involved in AJC; The parameter identification-calibration strategy combined with pre-experiment identifies unknown variables in the ankle musculoskeletal dynamic decoupling model; Finally, the musculoskeletal dynamic decoupling model relates the muscle forces to the AJC's actively exerted torque. The musculoskeletal dynamic decoupling model combines anatomical and biomechanical features, enabling parameters derived from a single DOF pre-experiment through identification-calibration strategy to be applicable in multi-DOF dynamic motion. To evaluate the estimation performance of the framework, experiments were conducted in various directions involving both single and multiple DOFs. The results show that the proposed framework can estimate the actively exerted torque with a normalized root mean square error (NRMSE) of <inline-formula> <tex-math notation="LaTeX">{10}.{29}\% \pm {2}.{86}\% </tex-math></inline-formula> (mean ± SD) for torque estimation under a single DOF, and NRMSE of <inline-formula> <tex-math notation="LaTeX">{11}.{35}\% \pm {4}.{51}\% </tex-math></inline-formula> under multiple DOFs, compared to the actual measured values. This framework can improve human-robot interaction training and improve the effectiveness of robot-assisted ankle rehabilitation training. It can also provide accurate neuro-information and joint torque data for medical teams, which can lead to early diagnosis of diseases and patient-specific treatment protocols.]]></description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3515966</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>IEEE</publisher><subject>actively exerted torque ; Ankle ; Ankle rehabilitation ; Biological system modeling ; Computational modeling ; Dynamics ; Estimation ; Force ; hill-based model ; Muscles ; Musculoskeletal system ; parameter identification ; Torque ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2025, Vol.33, p.81-91</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1746-e53afaff56b1b1efb946ef54f02d49a6a7ed2c7cea77892d0fca0cf3d2366a9c3</cites><orcidid>0000-0003-1287-2917 ; 0000-0001-9638-574X ; 0000-0002-5303-3899 ; 0000-0001-6431-9350 ; 0000-0003-4036-9518 ; 0000-0002-4338-6420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Zuo, Shiping</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Dong, Mingjie</creatorcontrib><creatorcontrib>Sun, Zhongbo</creatorcontrib><title>An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description><![CDATA[Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three degrees of freedom (DOFs) of AJC and its coupled motion, it becomes essential to accurately estimate the actively exerted torque under multi-DOF. This work introduces an estimation framework that includes the Hill-based sEMG-force model, the ankle musculoskeletal dynamic decoupling model, and the parameter identification-calibration strategy. The Hill-based sEMG-force model estimates the force generated by individual muscles involved in AJC; The parameter identification-calibration strategy combined with pre-experiment identifies unknown variables in the ankle musculoskeletal dynamic decoupling model; Finally, the musculoskeletal dynamic decoupling model relates the muscle forces to the AJC's actively exerted torque. The musculoskeletal dynamic decoupling model combines anatomical and biomechanical features, enabling parameters derived from a single DOF pre-experiment through identification-calibration strategy to be applicable in multi-DOF dynamic motion. To evaluate the estimation performance of the framework, experiments were conducted in various directions involving both single and multiple DOFs. The results show that the proposed framework can estimate the actively exerted torque with a normalized root mean square error (NRMSE) of <inline-formula> <tex-math notation="LaTeX">{10}.{29}\% \pm {2}.{86}\% </tex-math></inline-formula> (mean ± SD) for torque estimation under a single DOF, and NRMSE of <inline-formula> <tex-math notation="LaTeX">{11}.{35}\% \pm {4}.{51}\% </tex-math></inline-formula> under multiple DOFs, compared to the actual measured values. This framework can improve human-robot interaction training and improve the effectiveness of robot-assisted ankle rehabilitation training. It can also provide accurate neuro-information and joint torque data for medical teams, which can lead to early diagnosis of diseases and patient-specific treatment protocols.]]></description><subject>actively exerted torque</subject><subject>Ankle</subject><subject>Ankle rehabilitation</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Dynamics</subject><subject>Estimation</subject><subject>Force</subject><subject>hill-based model</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>parameter identification</subject><subject>Torque</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKAzEQhhdRsB5eQLzIC2zNaZPmstStCtaCttchm0xKdLvR7Lbat7cnxKsZ5uf_YPiy7IbgPiFY3c1e3l7LPsWU91lBCiXESdYjRTHIMSX4dLcznnNG8Xl20bbvGBMpCtnLvoYNmjZ1aACVbReWpgvNAo2TWcJ3TB_Ix4SGzUcNaGi7sIZ6g8ofSB04NIvpawVo3jhIaLKqu5DfT8doFFef9Ta-3zRmGSyaxC7EpkXrYFBbTh6usjNv6hauj_Mym4_L2egxf54-PI2Gz7klkoscCma88b4QFakI-EpxAb7gHlPHlRFGgqNWWjBSDhR12FuDrWeOMiGMsuwyezpwXTTv-jNtf0sbHU3Q-0NMC21SF2wNmnoDUnELXinugCrmrBAWA1BwFSZbFj2wbIptm8D_8QjWOwF6L0DvBOijgG3p9lAKAPCvIBWjnLFfpZaEQA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhou, Yu</creator><creator>Li, Jianfeng</creator><creator>Zuo, Shiping</creator><creator>Zhang, Jie</creator><creator>Dong, Mingjie</creator><creator>Sun, Zhongbo</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1287-2917</orcidid><orcidid>https://orcid.org/0000-0001-9638-574X</orcidid><orcidid>https://orcid.org/0000-0002-5303-3899</orcidid><orcidid>https://orcid.org/0000-0001-6431-9350</orcidid><orcidid>https://orcid.org/0000-0003-4036-9518</orcidid><orcidid>https://orcid.org/0000-0002-4338-6420</orcidid></search><sort><creationdate>2025</creationdate><title>An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG</title><author>Zhou, Yu ; Li, Jianfeng ; Zuo, Shiping ; Zhang, Jie ; Dong, Mingjie ; Sun, Zhongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1746-e53afaff56b1b1efb946ef54f02d49a6a7ed2c7cea77892d0fca0cf3d2366a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>actively exerted torque</topic><topic>Ankle</topic><topic>Ankle rehabilitation</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Dynamics</topic><topic>Estimation</topic><topic>Force</topic><topic>hill-based model</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>parameter identification</topic><topic>Torque</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Zuo, Shiping</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Dong, Mingjie</creatorcontrib><creatorcontrib>Sun, Zhongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yu</au><au>Li, Jianfeng</au><au>Zuo, Shiping</au><au>Zhang, Jie</au><au>Dong, Mingjie</au><au>Sun, Zhongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2025</date><risdate>2025</risdate><volume>33</volume><spage>81</spage><epage>91</epage><pages>81-91</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract><![CDATA[Ankle rehabilitation robots can offer tailored rehabilitation training, and facilitate the functional recovery of patients. Accurate estimation of the actively exerted torque from the ankle joint complex (AJC) can increase the engagement of patients during rehabilitation training. Given the three degrees of freedom (DOFs) of AJC and its coupled motion, it becomes essential to accurately estimate the actively exerted torque under multi-DOF. This work introduces an estimation framework that includes the Hill-based sEMG-force model, the ankle musculoskeletal dynamic decoupling model, and the parameter identification-calibration strategy. The Hill-based sEMG-force model estimates the force generated by individual muscles involved in AJC; The parameter identification-calibration strategy combined with pre-experiment identifies unknown variables in the ankle musculoskeletal dynamic decoupling model; Finally, the musculoskeletal dynamic decoupling model relates the muscle forces to the AJC's actively exerted torque. The musculoskeletal dynamic decoupling model combines anatomical and biomechanical features, enabling parameters derived from a single DOF pre-experiment through identification-calibration strategy to be applicable in multi-DOF dynamic motion. To evaluate the estimation performance of the framework, experiments were conducted in various directions involving both single and multiple DOFs. The results show that the proposed framework can estimate the actively exerted torque with a normalized root mean square error (NRMSE) of <inline-formula> <tex-math notation="LaTeX">{10}.{29}\% \pm {2}.{86}\% </tex-math></inline-formula> (mean ± SD) for torque estimation under a single DOF, and NRMSE of <inline-formula> <tex-math notation="LaTeX">{11}.{35}\% \pm {4}.{51}\% </tex-math></inline-formula> under multiple DOFs, compared to the actual measured values. This framework can improve human-robot interaction training and improve the effectiveness of robot-assisted ankle rehabilitation training. It can also provide accurate neuro-information and joint torque data for medical teams, which can lead to early diagnosis of diseases and patient-specific treatment protocols.]]></abstract><pub>IEEE</pub><doi>10.1109/TNSRE.2024.3515966</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1287-2917</orcidid><orcidid>https://orcid.org/0000-0001-9638-574X</orcidid><orcidid>https://orcid.org/0000-0002-5303-3899</orcidid><orcidid>https://orcid.org/0000-0001-6431-9350</orcidid><orcidid>https://orcid.org/0000-0003-4036-9518</orcidid><orcidid>https://orcid.org/0000-0002-4338-6420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2025, Vol.33, p.81-91 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_10793243 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | actively exerted torque Ankle Ankle rehabilitation Biological system modeling Computational modeling Dynamics Estimation Force hill-based model Muscles Musculoskeletal system parameter identification Torque Training |
title | An Online Estimating Framework for Ankle Actively Exerted Torque Under Multi-DOF Coupled Dynamic Motions via sEMG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Online%20Estimating%20Framework%20for%20Ankle%20Actively%20Exerted%20Torque%20Under%20Multi-DOF%20Coupled%20Dynamic%20Motions%20via%20sEMG&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Zhou,%20Yu&rft.date=2025&rft.volume=33&rft.spage=81&rft.epage=91&rft.pages=81-91&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3515966&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_2fae794cef994de293dc66c0ee2edb01%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10793243&rft_doaj_id=oai_doaj_org_article_2fae794cef994de293dc66c0ee2edb01&rfr_iscdi=true |