EMDTORA: Energy-Aware Multi-User Dependent Task Offloading and Resource Allocation in MEC Using Graph-Enabled DRL

The dawn of the 5G/6G networking era has led to the widespread adoption of Multi-Access Edge Computing (MEC), a paradigm shift that brings computational resources at the network's edge to enhance device performance and longevity. Additionally, the proliferation of Internet of Things (IoT) has f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on green communications and networking 2024-12, p.1-1
Hauptverfasser: Khan, Sangrez, Avgeris, Marios, Gascon-Samson, Julien, Leivadeas, Aris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on green communications and networking
container_volume
creator Khan, Sangrez
Avgeris, Marios
Gascon-Samson, Julien
Leivadeas, Aris
description The dawn of the 5G/6G networking era has led to the widespread adoption of Multi-Access Edge Computing (MEC), a paradigm shift that brings computational resources at the network's edge to enhance device performance and longevity. Additionally, the proliferation of Internet of Things (IoT) has facilitated the development of complex multi-user, multi-edge server environments. In these settings, the interdependence of application tasks makes computational offloading and resource allocation decision-making challenging, but crucial for optimizing energy efficiency. As a response, in this paper, we propose an Energy-Aware Multi-user Dependent Task Offloading and Resource Allocation (EMDTORA) scheme for IoT-MEC infrastructures. First, we formulate an offline, task offloading, multi-objective optimization problem that aims to minimize the user devices' energy consumption and experienced delay under given constraints. Given the NP-hardness of the problem, we devise an online framework that combines a Graph Attention Networks (GAT)-based mechanism, which captures the in-depth dependency structure of the applications, with an actor-critic off-policy Deep Reinforcement Learning (DRL) algorithm to approximate the optimal solution. Through extensive simulation we highlight the potency of the proposed scheme, as EMDTORA outperforms various baselines by successfully balancing the trade-off between energy consumption and delay minimization, under dynamic network conditions.
doi_str_mv 10.1109/TGCN.2024.3514578
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10787266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10787266</ieee_id><sourcerecordid>10_1109_TGCN_2024_3514578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636-e7dc21c5eaf2a5f29a5f54cce04be701d82c1c2d8904863e24397ddf754b027e3</originalsourceid><addsrcrecordid>eNpNkM1OwkAcxDdGEwnyACYe9gWK-9Vu660ptZqAJKScm2X3v1itW9yFGN5eGjhwmZnDzBx-CD1SMqWUZM91VXxMGWFiymMqYpneoBETkkdMEHJ7le_RJIQvQgjLYppkfIR-y8WsXq7yF1w68NtjlP8pD3hx6PZttA7g8Qx24Ay4Pa5V-MZLa7temdZtsXIGryD0B68B513Xa7Vve4dbhxdlgddhKFVe7T6j0qlNBwbPVvMHdGdVF2By8TGqX8u6eIvmy-q9yOeRTngSgTSaUR2DskzFlmUniYXWQMQGJKEmZZpqZtKMiDThwATPpDFWxmJDmAQ-RvR8q30fggfb7Hz7o_yxoaQZqDUDtWag1lyonTZP500LAFd9mUqWJPwfpaFn8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EMDTORA: Energy-Aware Multi-User Dependent Task Offloading and Resource Allocation in MEC Using Graph-Enabled DRL</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Sangrez ; Avgeris, Marios ; Gascon-Samson, Julien ; Leivadeas, Aris</creator><creatorcontrib>Khan, Sangrez ; Avgeris, Marios ; Gascon-Samson, Julien ; Leivadeas, Aris</creatorcontrib><description>The dawn of the 5G/6G networking era has led to the widespread adoption of Multi-Access Edge Computing (MEC), a paradigm shift that brings computational resources at the network's edge to enhance device performance and longevity. Additionally, the proliferation of Internet of Things (IoT) has facilitated the development of complex multi-user, multi-edge server environments. In these settings, the interdependence of application tasks makes computational offloading and resource allocation decision-making challenging, but crucial for optimizing energy efficiency. As a response, in this paper, we propose an Energy-Aware Multi-user Dependent Task Offloading and Resource Allocation (EMDTORA) scheme for IoT-MEC infrastructures. First, we formulate an offline, task offloading, multi-objective optimization problem that aims to minimize the user devices' energy consumption and experienced delay under given constraints. Given the NP-hardness of the problem, we devise an online framework that combines a Graph Attention Networks (GAT)-based mechanism, which captures the in-depth dependency structure of the applications, with an actor-critic off-policy Deep Reinforcement Learning (DRL) algorithm to approximate the optimal solution. Through extensive simulation we highlight the potency of the proposed scheme, as EMDTORA outperforms various baselines by successfully balancing the trade-off between energy consumption and delay minimization, under dynamic network conditions.</description><identifier>ISSN: 2473-2400</identifier><identifier>EISSN: 2473-2400</identifier><identifier>DOI: 10.1109/TGCN.2024.3514578</identifier><identifier>CODEN: ITGCBM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Delays ; DRL ; Dynamic scheduling ; Energy consumption ; Energy Efficiency ; Graph Attention Networks ; Heuristic algorithms ; Internet of Things ; IoT ; MEC ; Minimization ; Optimization ; Resource Allocation ; Resource management ; Servers ; Task Offloading</subject><ispartof>IEEE transactions on green communications and networking, 2024-12, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4261-9656 ; 0000-0002-2996-6824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10787266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10787266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Sangrez</creatorcontrib><creatorcontrib>Avgeris, Marios</creatorcontrib><creatorcontrib>Gascon-Samson, Julien</creatorcontrib><creatorcontrib>Leivadeas, Aris</creatorcontrib><title>EMDTORA: Energy-Aware Multi-User Dependent Task Offloading and Resource Allocation in MEC Using Graph-Enabled DRL</title><title>IEEE transactions on green communications and networking</title><addtitle>TGCN</addtitle><description>The dawn of the 5G/6G networking era has led to the widespread adoption of Multi-Access Edge Computing (MEC), a paradigm shift that brings computational resources at the network's edge to enhance device performance and longevity. Additionally, the proliferation of Internet of Things (IoT) has facilitated the development of complex multi-user, multi-edge server environments. In these settings, the interdependence of application tasks makes computational offloading and resource allocation decision-making challenging, but crucial for optimizing energy efficiency. As a response, in this paper, we propose an Energy-Aware Multi-user Dependent Task Offloading and Resource Allocation (EMDTORA) scheme for IoT-MEC infrastructures. First, we formulate an offline, task offloading, multi-objective optimization problem that aims to minimize the user devices' energy consumption and experienced delay under given constraints. Given the NP-hardness of the problem, we devise an online framework that combines a Graph Attention Networks (GAT)-based mechanism, which captures the in-depth dependency structure of the applications, with an actor-critic off-policy Deep Reinforcement Learning (DRL) algorithm to approximate the optimal solution. Through extensive simulation we highlight the potency of the proposed scheme, as EMDTORA outperforms various baselines by successfully balancing the trade-off between energy consumption and delay minimization, under dynamic network conditions.</description><subject>Computational modeling</subject><subject>Delays</subject><subject>DRL</subject><subject>Dynamic scheduling</subject><subject>Energy consumption</subject><subject>Energy Efficiency</subject><subject>Graph Attention Networks</subject><subject>Heuristic algorithms</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>MEC</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Resource Allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task Offloading</subject><issn>2473-2400</issn><issn>2473-2400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwkAcxDdGEwnyACYe9gWK-9Vu660ptZqAJKScm2X3v1itW9yFGN5eGjhwmZnDzBx-CD1SMqWUZM91VXxMGWFiymMqYpneoBETkkdMEHJ7le_RJIQvQgjLYppkfIR-y8WsXq7yF1w68NtjlP8pD3hx6PZttA7g8Qx24Ay4Pa5V-MZLa7temdZtsXIGryD0B68B513Xa7Vve4dbhxdlgddhKFVe7T6j0qlNBwbPVvMHdGdVF2By8TGqX8u6eIvmy-q9yOeRTngSgTSaUR2DskzFlmUniYXWQMQGJKEmZZpqZtKMiDThwATPpDFWxmJDmAQ-RvR8q30fggfb7Hz7o_yxoaQZqDUDtWag1lyonTZP500LAFd9mUqWJPwfpaFn8g</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Khan, Sangrez</creator><creator>Avgeris, Marios</creator><creator>Gascon-Samson, Julien</creator><creator>Leivadeas, Aris</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4261-9656</orcidid><orcidid>https://orcid.org/0000-0002-2996-6824</orcidid></search><sort><creationdate>20241209</creationdate><title>EMDTORA: Energy-Aware Multi-User Dependent Task Offloading and Resource Allocation in MEC Using Graph-Enabled DRL</title><author>Khan, Sangrez ; Avgeris, Marios ; Gascon-Samson, Julien ; Leivadeas, Aris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636-e7dc21c5eaf2a5f29a5f54cce04be701d82c1c2d8904863e24397ddf754b027e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Delays</topic><topic>DRL</topic><topic>Dynamic scheduling</topic><topic>Energy consumption</topic><topic>Energy Efficiency</topic><topic>Graph Attention Networks</topic><topic>Heuristic algorithms</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>MEC</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Resource Allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task Offloading</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Sangrez</creatorcontrib><creatorcontrib>Avgeris, Marios</creatorcontrib><creatorcontrib>Gascon-Samson, Julien</creatorcontrib><creatorcontrib>Leivadeas, Aris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on green communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Sangrez</au><au>Avgeris, Marios</au><au>Gascon-Samson, Julien</au><au>Leivadeas, Aris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EMDTORA: Energy-Aware Multi-User Dependent Task Offloading and Resource Allocation in MEC Using Graph-Enabled DRL</atitle><jtitle>IEEE transactions on green communications and networking</jtitle><stitle>TGCN</stitle><date>2024-12-09</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2473-2400</issn><eissn>2473-2400</eissn><coden>ITGCBM</coden><abstract>The dawn of the 5G/6G networking era has led to the widespread adoption of Multi-Access Edge Computing (MEC), a paradigm shift that brings computational resources at the network's edge to enhance device performance and longevity. Additionally, the proliferation of Internet of Things (IoT) has facilitated the development of complex multi-user, multi-edge server environments. In these settings, the interdependence of application tasks makes computational offloading and resource allocation decision-making challenging, but crucial for optimizing energy efficiency. As a response, in this paper, we propose an Energy-Aware Multi-user Dependent Task Offloading and Resource Allocation (EMDTORA) scheme for IoT-MEC infrastructures. First, we formulate an offline, task offloading, multi-objective optimization problem that aims to minimize the user devices' energy consumption and experienced delay under given constraints. Given the NP-hardness of the problem, we devise an online framework that combines a Graph Attention Networks (GAT)-based mechanism, which captures the in-depth dependency structure of the applications, with an actor-critic off-policy Deep Reinforcement Learning (DRL) algorithm to approximate the optimal solution. Through extensive simulation we highlight the potency of the proposed scheme, as EMDTORA outperforms various baselines by successfully balancing the trade-off between energy consumption and delay minimization, under dynamic network conditions.</abstract><pub>IEEE</pub><doi>10.1109/TGCN.2024.3514578</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4261-9656</orcidid><orcidid>https://orcid.org/0000-0002-2996-6824</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2473-2400
ispartof IEEE transactions on green communications and networking, 2024-12, p.1-1
issn 2473-2400
2473-2400
language eng
recordid cdi_ieee_primary_10787266
source IEEE Electronic Library (IEL)
subjects Computational modeling
Delays
DRL
Dynamic scheduling
Energy consumption
Energy Efficiency
Graph Attention Networks
Heuristic algorithms
Internet of Things
IoT
MEC
Minimization
Optimization
Resource Allocation
Resource management
Servers
Task Offloading
title EMDTORA: Energy-Aware Multi-User Dependent Task Offloading and Resource Allocation in MEC Using Graph-Enabled DRL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EMDTORA:%20Energy-Aware%20Multi-User%20Dependent%20Task%20Offloading%20and%20Resource%20Allocation%20in%20MEC%20Using%20Graph-Enabled%20DRL&rft.jtitle=IEEE%20transactions%20on%20green%20communications%20and%20networking&rft.au=Khan,%20Sangrez&rft.date=2024-12-09&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2473-2400&rft.eissn=2473-2400&rft.coden=ITGCBM&rft_id=info:doi/10.1109/TGCN.2024.3514578&rft_dat=%3Ccrossref_RIE%3E10_1109_TGCN_2024_3514578%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10787266&rfr_iscdi=true