Optimized Inference Scheme for Conditional Computation in On-Device Object Detection

Recently, conditional computation has been applied to on-device object detection to solve the conflict between huge computation requirments of deep neural network (DNN) and limited computation resources of edge devices. There is a need for an optimized inference scheme that can efficiently perform c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE embedded systems letters 2024-12, p.1-1
Hauptverfasser: Zhao, Kairong, Chang, Yinghui, Wu, Weikang, Li, Zirun, Luo, Hongyin, He, Shan, Guo, Donghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE embedded systems letters
container_volume
creator Zhao, Kairong
Chang, Yinghui
Wu, Weikang
Li, Zirun
Luo, Hongyin
He, Shan
Guo, Donghui
description Recently, conditional computation has been applied to on-device object detection to solve the conflict between huge computation requirments of deep neural network (DNN) and limited computation resources of edge devices. There is a need for an optimized inference scheme that can efficiently perform conditional computation in on-device object detection. This letter proposes a predictor which can predict router decisions of conditional computation. Based on the predictor, this letter also presents an inference scheme which hides router latency through concurrently executing router and the predicted branch. The proposed predictor shows higher accuracy than profiling-based method, and experiment shows that our inference scheme can get latency decrease over traditional scheme.
doi_str_mv 10.1109/LES.2024.3514920
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10787219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10787219</ieee_id><sourcerecordid>10787219</sourcerecordid><originalsourceid>FETCH-ieee_primary_107872193</originalsourceid><addsrcrecordid>eNqFijsPgjAYRTtoIlF2B4f-AbAPHnYGjSYmDLAThI9YAoWUaqK_3pq4e5dzb85FaEuJTykR--sx9xlhgc9DGghGFsihIuAeiSK-Qu48d8QmDOKQhw4qssnIQb6hwRfVggZVA87rOwyA21HjZFSNNHJUVW_7MD1M9V1YKpwpL4WntP_s1kFtcArGwtoNWrZVP4P74xrtTsciOXsSAMpJy6HSr5KS-BAzKvgf_QHnez_O</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimized Inference Scheme for Conditional Computation in On-Device Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Kairong ; Chang, Yinghui ; Wu, Weikang ; Li, Zirun ; Luo, Hongyin ; He, Shan ; Guo, Donghui</creator><creatorcontrib>Zhao, Kairong ; Chang, Yinghui ; Wu, Weikang ; Li, Zirun ; Luo, Hongyin ; He, Shan ; Guo, Donghui</creatorcontrib><description>Recently, conditional computation has been applied to on-device object detection to solve the conflict between huge computation requirments of deep neural network (DNN) and limited computation resources of edge devices. There is a need for an optimized inference scheme that can efficiently perform conditional computation in on-device object detection. This letter proposes a predictor which can predict router decisions of conditional computation. Based on the predictor, this letter also presents an inference scheme which hides router latency through concurrently executing router and the predicted branch. The proposed predictor shows higher accuracy than profiling-based method, and experiment shows that our inference scheme can get latency decrease over traditional scheme.</description><identifier>ISSN: 1943-0663</identifier><identifier>DOI: 10.1109/LES.2024.3514920</identifier><identifier>CODEN: ESLMAP</identifier><language>eng</language><publisher>IEEE</publisher><subject>acceleration ; Accuracy ; Artificial neural networks ; Computational modeling ; conditional computation ; Detectors ; edge AI ; Graphics processing units ; History ; inference optimization ; Object detection ; Predictive models ; Training ; Videos</subject><ispartof>IEEE embedded systems letters, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-9217-7205 ; 0000-0002-4264-7553 ; 0000-0001-5915-4088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10787219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10787219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Kairong</creatorcontrib><creatorcontrib>Chang, Yinghui</creatorcontrib><creatorcontrib>Wu, Weikang</creatorcontrib><creatorcontrib>Li, Zirun</creatorcontrib><creatorcontrib>Luo, Hongyin</creatorcontrib><creatorcontrib>He, Shan</creatorcontrib><creatorcontrib>Guo, Donghui</creatorcontrib><title>Optimized Inference Scheme for Conditional Computation in On-Device Object Detection</title><title>IEEE embedded systems letters</title><addtitle>LES</addtitle><description>Recently, conditional computation has been applied to on-device object detection to solve the conflict between huge computation requirments of deep neural network (DNN) and limited computation resources of edge devices. There is a need for an optimized inference scheme that can efficiently perform conditional computation in on-device object detection. This letter proposes a predictor which can predict router decisions of conditional computation. Based on the predictor, this letter also presents an inference scheme which hides router latency through concurrently executing router and the predicted branch. The proposed predictor shows higher accuracy than profiling-based method, and experiment shows that our inference scheme can get latency decrease over traditional scheme.</description><subject>acceleration</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>conditional computation</subject><subject>Detectors</subject><subject>edge AI</subject><subject>Graphics processing units</subject><subject>History</subject><subject>inference optimization</subject><subject>Object detection</subject><subject>Predictive models</subject><subject>Training</subject><subject>Videos</subject><issn>1943-0663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFijsPgjAYRTtoIlF2B4f-AbAPHnYGjSYmDLAThI9YAoWUaqK_3pq4e5dzb85FaEuJTykR--sx9xlhgc9DGghGFsihIuAeiSK-Qu48d8QmDOKQhw4qssnIQb6hwRfVggZVA87rOwyA21HjZFSNNHJUVW_7MD1M9V1YKpwpL4WntP_s1kFtcArGwtoNWrZVP4P74xrtTsciOXsSAMpJy6HSr5KS-BAzKvgf_QHnez_O</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Zhao, Kairong</creator><creator>Chang, Yinghui</creator><creator>Wu, Weikang</creator><creator>Li, Zirun</creator><creator>Luo, Hongyin</creator><creator>He, Shan</creator><creator>Guo, Donghui</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0009-0004-9217-7205</orcidid><orcidid>https://orcid.org/0000-0002-4264-7553</orcidid><orcidid>https://orcid.org/0000-0001-5915-4088</orcidid></search><sort><creationdate>20241209</creationdate><title>Optimized Inference Scheme for Conditional Computation in On-Device Object Detection</title><author>Zhao, Kairong ; Chang, Yinghui ; Wu, Weikang ; Li, Zirun ; Luo, Hongyin ; He, Shan ; Guo, Donghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107872193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acceleration</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>conditional computation</topic><topic>Detectors</topic><topic>edge AI</topic><topic>Graphics processing units</topic><topic>History</topic><topic>inference optimization</topic><topic>Object detection</topic><topic>Predictive models</topic><topic>Training</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Kairong</creatorcontrib><creatorcontrib>Chang, Yinghui</creatorcontrib><creatorcontrib>Wu, Weikang</creatorcontrib><creatorcontrib>Li, Zirun</creatorcontrib><creatorcontrib>Luo, Hongyin</creatorcontrib><creatorcontrib>He, Shan</creatorcontrib><creatorcontrib>Guo, Donghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE embedded systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Kairong</au><au>Chang, Yinghui</au><au>Wu, Weikang</au><au>Li, Zirun</au><au>Luo, Hongyin</au><au>He, Shan</au><au>Guo, Donghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Inference Scheme for Conditional Computation in On-Device Object Detection</atitle><jtitle>IEEE embedded systems letters</jtitle><stitle>LES</stitle><date>2024-12-09</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1943-0663</issn><coden>ESLMAP</coden><abstract>Recently, conditional computation has been applied to on-device object detection to solve the conflict between huge computation requirments of deep neural network (DNN) and limited computation resources of edge devices. There is a need for an optimized inference scheme that can efficiently perform conditional computation in on-device object detection. This letter proposes a predictor which can predict router decisions of conditional computation. Based on the predictor, this letter also presents an inference scheme which hides router latency through concurrently executing router and the predicted branch. The proposed predictor shows higher accuracy than profiling-based method, and experiment shows that our inference scheme can get latency decrease over traditional scheme.</abstract><pub>IEEE</pub><doi>10.1109/LES.2024.3514920</doi><orcidid>https://orcid.org/0009-0004-9217-7205</orcidid><orcidid>https://orcid.org/0000-0002-4264-7553</orcidid><orcidid>https://orcid.org/0000-0001-5915-4088</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0663
ispartof IEEE embedded systems letters, 2024-12, p.1-1
issn 1943-0663
language eng
recordid cdi_ieee_primary_10787219
source IEEE Electronic Library (IEL)
subjects acceleration
Accuracy
Artificial neural networks
Computational modeling
conditional computation
Detectors
edge AI
Graphics processing units
History
inference optimization
Object detection
Predictive models
Training
Videos
title Optimized Inference Scheme for Conditional Computation in On-Device Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Inference%20Scheme%20for%20Conditional%20Computation%20in%20On-Device%20Object%20Detection&rft.jtitle=IEEE%20embedded%20systems%20letters&rft.au=Zhao,%20Kairong&rft.date=2024-12-09&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1943-0663&rft.coden=ESLMAP&rft_id=info:doi/10.1109/LES.2024.3514920&rft_dat=%3Cieee_RIE%3E10787219%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10787219&rfr_iscdi=true