PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning
The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents nota...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Liu, Mengran Zhang, Weijian Wei, Cun Bao, Zhenming Hu, Jingjie Zhou, Junwei |
description | The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper. |
doi_str_mv | 10.1109/ACCESS.2024.3509622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10785563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10785563</ieee_id><doaj_id>oai_doaj_org_article_f49295dd93514bbfabf7cfe8e646dc69</doaj_id><sourcerecordid>3144175634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2405-e5c2c3cbbac7b8cf04c6a17ac00c8bb122b1435914af911be64469efc9f8de0d3</originalsourceid><addsrcrecordid>eNpNkVtrGzEQhZfQQEKaX9A-LPTZru676psxqWPYkJDYz0KXkbvuWnKlNSH_Pko2lMzLDIc53wycqvqG0RxjJH8ulsubp6c5QYTNKUdSEHJWXRIs5IxyKr58mi-q65z3qFRbJN5cVn8futVi86veBgfpWY-Q6ocB7JjiMR5Oue4gHnVyZXoEG3ehH_sY6m3uw65eDdHooV6MI4R3-Q7sHx36fKh1cPUm6ZB9AXagUyiGr9W510OG649-VW1_32yWt7PufrVeLrqZJQzxGXBLLLXGaNuY1nrErNC40RYh2xqDCTGYUS4x015ibEAwJiR4K33rADl6Va0nrot6r46pP-j0oqLu1bsQ007pNPZ2AOWZJJI7JynHzBivjW-sh7YwhbNCFtaPiXVM8d8J8qj28ZRCeV9RzBhuuKCsbNFpy6aYcwL__ypG6i0kNYWk3kJSHyEV1_fJ1QPAJ0fT8kKlr8M2j2o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175634</pqid></control><display><type>article</type><title>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Mengran ; Zhang, Weijian ; Wei, Cun ; Bao, Zhenming ; Hu, Jingjie ; Zhou, Junwei</creator><creatorcontrib>Liu, Mengran ; Zhang, Weijian ; Wei, Cun ; Bao, Zhenming ; Hu, Jingjie ; Zhou, Junwei</creatorcontrib><description>The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3509622</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Plectropomus Leopardus ; Annotations ; Attention mechanisms ; Breeding ; Convolutional Neural Network ; Convolutional neural networks ; Datasets ; Effectiveness ; Feature extraction ; Fish ; Global Attention Mechanism ; Head ; Image color analysis ; Image enhancement ; Learning ; Object detection ; Object recognition ; Performance evaluation ; Plectropomus leopardus ; Source code ; Tensors ; Transfer learning ; Underwater Object Recognition ; Underwater resources</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2405-e5c2c3cbbac7b8cf04c6a17ac00c8bb122b1435914af911be64469efc9f8de0d3</cites><orcidid>0009-0003-8858-5487 ; 0000-0002-6094-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10785563$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Mengran</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Wei, Cun</creatorcontrib><creatorcontrib>Bao, Zhenming</creatorcontrib><creatorcontrib>Hu, Jingjie</creatorcontrib><creatorcontrib>Zhou, Junwei</creatorcontrib><title>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Plectropomus Leopardus</subject><subject>Annotations</subject><subject>Attention mechanisms</subject><subject>Breeding</subject><subject>Convolutional Neural Network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Fish</subject><subject>Global Attention Mechanism</subject><subject>Head</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Plectropomus leopardus</subject><subject>Source code</subject><subject>Tensors</subject><subject>Transfer learning</subject><subject>Underwater Object Recognition</subject><subject>Underwater resources</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtrGzEQhZfQQEKaX9A-LPTZru676psxqWPYkJDYz0KXkbvuWnKlNSH_Pko2lMzLDIc53wycqvqG0RxjJH8ulsubp6c5QYTNKUdSEHJWXRIs5IxyKr58mi-q65z3qFRbJN5cVn8futVi86veBgfpWY-Q6ocB7JjiMR5Oue4gHnVyZXoEG3ehH_sY6m3uw65eDdHooV6MI4R3-Q7sHx36fKh1cPUm6ZB9AXagUyiGr9W510OG649-VW1_32yWt7PufrVeLrqZJQzxGXBLLLXGaNuY1nrErNC40RYh2xqDCTGYUS4x015ibEAwJiR4K33rADl6Va0nrot6r46pP-j0oqLu1bsQ007pNPZ2AOWZJJI7JynHzBivjW-sh7YwhbNCFtaPiXVM8d8J8qj28ZRCeV9RzBhuuKCsbNFpy6aYcwL__ypG6i0kNYWk3kJSHyEV1_fJ1QPAJ0fT8kKlr8M2j2o</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Mengran</creator><creator>Zhang, Weijian</creator><creator>Wei, Cun</creator><creator>Bao, Zhenming</creator><creator>Hu, Jingjie</creator><creator>Zhou, Junwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-8858-5487</orcidid><orcidid>https://orcid.org/0000-0002-6094-1203</orcidid></search><sort><creationdate>20240101</creationdate><title>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</title><author>Liu, Mengran ; Zhang, Weijian ; Wei, Cun ; Bao, Zhenming ; Hu, Jingjie ; Zhou, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2405-e5c2c3cbbac7b8cf04c6a17ac00c8bb122b1435914af911be64469efc9f8de0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Plectropomus Leopardus</topic><topic>Annotations</topic><topic>Attention mechanisms</topic><topic>Breeding</topic><topic>Convolutional Neural Network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Fish</topic><topic>Global Attention Mechanism</topic><topic>Head</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Plectropomus leopardus</topic><topic>Source code</topic><topic>Tensors</topic><topic>Transfer learning</topic><topic>Underwater Object Recognition</topic><topic>Underwater resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mengran</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Wei, Cun</creatorcontrib><creatorcontrib>Bao, Zhenming</creatorcontrib><creatorcontrib>Hu, Jingjie</creatorcontrib><creatorcontrib>Zhou, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mengran</au><au>Zhang, Weijian</au><au>Wei, Cun</au><au>Bao, Zhenming</au><au>Hu, Jingjie</au><au>Zhou, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3509622</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-8858-5487</orcidid><orcidid>https://orcid.org/0000-0002-6094-1203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10785563 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Plectropomus Leopardus Annotations Attention mechanisms Breeding Convolutional Neural Network Convolutional neural networks Datasets Effectiveness Feature extraction Fish Global Attention Mechanism Head Image color analysis Image enhancement Learning Object detection Object recognition Performance evaluation Plectropomus leopardus Source code Tensors Transfer learning Underwater Object Recognition Underwater resources |
title | PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLGAT:%20Underwater%20Plectropomus%20Leopardus%20Recognition%20Using%20Global%20Attention%20Mechanism%20and%20Transfer%20Learning&rft.jtitle=IEEE%20access&rft.au=Liu,%20Mengran&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3509622&rft_dat=%3Cproquest_ieee_%3E3144175634%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175634&rft_id=info:pmid/&rft_ieee_id=10785563&rft_doaj_id=oai_doaj_org_article_f49295dd93514bbfabf7cfe8e646dc69&rfr_iscdi=true |