PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning

The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents nota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Liu, Mengran, Zhang, Weijian, Wei, Cun, Bao, Zhenming, Hu, Jingjie, Zhou, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Liu, Mengran
Zhang, Weijian
Wei, Cun
Bao, Zhenming
Hu, Jingjie
Zhou, Junwei
description The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.
doi_str_mv 10.1109/ACCESS.2024.3509622
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10785563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10785563</ieee_id><doaj_id>oai_doaj_org_article_f49295dd93514bbfabf7cfe8e646dc69</doaj_id><sourcerecordid>3144175634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2405-e5c2c3cbbac7b8cf04c6a17ac00c8bb122b1435914af911be64469efc9f8de0d3</originalsourceid><addsrcrecordid>eNpNkVtrGzEQhZfQQEKaX9A-LPTZru676psxqWPYkJDYz0KXkbvuWnKlNSH_Pko2lMzLDIc53wycqvqG0RxjJH8ulsubp6c5QYTNKUdSEHJWXRIs5IxyKr58mi-q65z3qFRbJN5cVn8futVi86veBgfpWY-Q6ocB7JjiMR5Oue4gHnVyZXoEG3ehH_sY6m3uw65eDdHooV6MI4R3-Q7sHx36fKh1cPUm6ZB9AXagUyiGr9W510OG649-VW1_32yWt7PufrVeLrqZJQzxGXBLLLXGaNuY1nrErNC40RYh2xqDCTGYUS4x015ibEAwJiR4K33rADl6Va0nrot6r46pP-j0oqLu1bsQ007pNPZ2AOWZJJI7JynHzBivjW-sh7YwhbNCFtaPiXVM8d8J8qj28ZRCeV9RzBhuuKCsbNFpy6aYcwL__ypG6i0kNYWk3kJSHyEV1_fJ1QPAJ0fT8kKlr8M2j2o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175634</pqid></control><display><type>article</type><title>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Mengran ; Zhang, Weijian ; Wei, Cun ; Bao, Zhenming ; Hu, Jingjie ; Zhou, Junwei</creator><creatorcontrib>Liu, Mengran ; Zhang, Weijian ; Wei, Cun ; Bao, Zhenming ; Hu, Jingjie ; Zhou, Junwei</creatorcontrib><description>The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3509622</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Plectropomus Leopardus ; Annotations ; Attention mechanisms ; Breeding ; Convolutional Neural Network ; Convolutional neural networks ; Datasets ; Effectiveness ; Feature extraction ; Fish ; Global Attention Mechanism ; Head ; Image color analysis ; Image enhancement ; Learning ; Object detection ; Object recognition ; Performance evaluation ; Plectropomus leopardus ; Source code ; Tensors ; Transfer learning ; Underwater Object Recognition ; Underwater resources</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2405-e5c2c3cbbac7b8cf04c6a17ac00c8bb122b1435914af911be64469efc9f8de0d3</cites><orcidid>0009-0003-8858-5487 ; 0000-0002-6094-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10785563$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Mengran</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Wei, Cun</creatorcontrib><creatorcontrib>Bao, Zhenming</creatorcontrib><creatorcontrib>Hu, Jingjie</creatorcontrib><creatorcontrib>Zhou, Junwei</creatorcontrib><title>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Plectropomus Leopardus</subject><subject>Annotations</subject><subject>Attention mechanisms</subject><subject>Breeding</subject><subject>Convolutional Neural Network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Fish</subject><subject>Global Attention Mechanism</subject><subject>Head</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Plectropomus leopardus</subject><subject>Source code</subject><subject>Tensors</subject><subject>Transfer learning</subject><subject>Underwater Object Recognition</subject><subject>Underwater resources</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtrGzEQhZfQQEKaX9A-LPTZru676psxqWPYkJDYz0KXkbvuWnKlNSH_Pko2lMzLDIc53wycqvqG0RxjJH8ulsubp6c5QYTNKUdSEHJWXRIs5IxyKr58mi-q65z3qFRbJN5cVn8futVi86veBgfpWY-Q6ocB7JjiMR5Oue4gHnVyZXoEG3ehH_sY6m3uw65eDdHooV6MI4R3-Q7sHx36fKh1cPUm6ZB9AXagUyiGr9W510OG649-VW1_32yWt7PufrVeLrqZJQzxGXBLLLXGaNuY1nrErNC40RYh2xqDCTGYUS4x015ibEAwJiR4K33rADl6Va0nrot6r46pP-j0oqLu1bsQ007pNPZ2AOWZJJI7JynHzBivjW-sh7YwhbNCFtaPiXVM8d8J8qj28ZRCeV9RzBhuuKCsbNFpy6aYcwL__ypG6i0kNYWk3kJSHyEV1_fJ1QPAJ0fT8kKlr8M2j2o</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Mengran</creator><creator>Zhang, Weijian</creator><creator>Wei, Cun</creator><creator>Bao, Zhenming</creator><creator>Hu, Jingjie</creator><creator>Zhou, Junwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-8858-5487</orcidid><orcidid>https://orcid.org/0000-0002-6094-1203</orcidid></search><sort><creationdate>20240101</creationdate><title>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</title><author>Liu, Mengran ; Zhang, Weijian ; Wei, Cun ; Bao, Zhenming ; Hu, Jingjie ; Zhou, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2405-e5c2c3cbbac7b8cf04c6a17ac00c8bb122b1435914af911be64469efc9f8de0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Plectropomus Leopardus</topic><topic>Annotations</topic><topic>Attention mechanisms</topic><topic>Breeding</topic><topic>Convolutional Neural Network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Fish</topic><topic>Global Attention Mechanism</topic><topic>Head</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Plectropomus leopardus</topic><topic>Source code</topic><topic>Tensors</topic><topic>Transfer learning</topic><topic>Underwater Object Recognition</topic><topic>Underwater resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mengran</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Wei, Cun</creatorcontrib><creatorcontrib>Bao, Zhenming</creatorcontrib><creatorcontrib>Hu, Jingjie</creatorcontrib><creatorcontrib>Zhou, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mengran</au><au>Zhang, Weijian</au><au>Wei, Cun</au><au>Bao, Zhenming</au><au>Hu, Jingjie</au><au>Zhou, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Plectropomus leopardus (P. leopardus) , a species found in underwater environments, possesses substantial strategic importance due to its rich underwater resources. However, the natural habitat and industrial breeding environment of P. leopardus is generally dark and complex, which presents notable challenges to object detection and recognition. In this research, we propose Plectropomus Leopardus recognition using Global Attention mechanism and Transfer learning(PLGAT), integrating a Global Attention Mechanism (GAM) with Transfer Learning to recognize P. leopardus in underwater environments. To resist the color variations, the PLGAT directs the model's attention toward salient regions by incorporating the output of the GAM with the vectors from the Head convolutional layer. Additionally, transferring knowledge from a large-scale Brackish dataset enhances the model's discrimination capabilities. To validate the effectiveness of PLGAT, we have created an extensive underwater Plectropomus Leopardus Recognition Dataset (PLRD), consisting of 6,058 annotations across 30 distinct object classes. Furthermore, we evaluate the performance of PLGAT on the widely used Brackish underwater dataset. Through comprehensive experiments, our results demonstrate that PLGAT achieves a mean average precision score of approximately 95% on PLRD and 97% on Brackish. These results signify a substantial improvement in recognition performance and highlight the efficacy of our approach compared to the state-of-the-art methods. To foster further research and promote reproducibility, we have made our source code and dataset openly available at https://github.com/wilkinszhang/Recognition-of-Underwater-leopard-coral-grouper.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3509622</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-8858-5487</orcidid><orcidid>https://orcid.org/0000-0002-6094-1203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10785563
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Plectropomus Leopardus
Annotations
Attention mechanisms
Breeding
Convolutional Neural Network
Convolutional neural networks
Datasets
Effectiveness
Feature extraction
Fish
Global Attention Mechanism
Head
Image color analysis
Image enhancement
Learning
Object detection
Object recognition
Performance evaluation
Plectropomus leopardus
Source code
Tensors
Transfer learning
Underwater Object Recognition
Underwater resources
title PLGAT: Underwater Plectropomus Leopardus Recognition Using Global Attention Mechanism and Transfer Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLGAT:%20Underwater%20Plectropomus%20Leopardus%20Recognition%20Using%20Global%20Attention%20Mechanism%20and%20Transfer%20Learning&rft.jtitle=IEEE%20access&rft.au=Liu,%20Mengran&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3509622&rft_dat=%3Cproquest_ieee_%3E3144175634%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175634&rft_id=info:pmid/&rft_ieee_id=10785563&rft_doaj_id=oai_doaj_org_article_f49295dd93514bbfabf7cfe8e646dc69&rfr_iscdi=true