Are Foundation Models the Next-Generation Social Media Content Moderators?

Recent progress in artificial intelligence (AI) tools and systems has been significant, especially in their reasoning and efficiency. Notable examples include generative AI-based large language models (LLMs) like Generative Pre-trained Transformer 3.5 (GPT-3.5), GPT-4, and Gemini, among others. In o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2024-11, Vol.39 (6), p.70-80
Hauptverfasser: Nadeem, Mohammad, Javed, Laeeba, Sohail, Shahab Saquib, Cambria, Erik, Hussain, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 6
container_start_page 70
container_title IEEE intelligent systems
container_volume 39
creator Nadeem, Mohammad
Javed, Laeeba
Sohail, Shahab Saquib
Cambria, Erik
Hussain, Amir
Cambria, Erik
description Recent progress in artificial intelligence (AI) tools and systems has been significant, especially in their reasoning and efficiency. Notable examples include generative AI-based large language models (LLMs) like Generative Pre-trained Transformer 3.5 (GPT-3.5), GPT-4, and Gemini, among others. In our work, we evaluated the effectiveness of fine-tuned deep learning models compared to general-purpose LLMs in moderating image-based content. We used deep learning models such as convolutional neural networks, ResNet50, and VGG-16, trained them for violence detection on an image dataset, and tested them on a separate dataset. The same test dataset was also evaluated using Large Language and Vision Assistant (LLaVa) and GPT-4, two LLMs that can process images. The results demonstrate that VGG-16 model had the highest accuracy at 0.94, while LLaVa had the lowest at 0.66. GPT-4 showed superiority over LLaVa with an accuracy value of 0.9242. LLaVa recorded the highest precision of all models.
doi_str_mv 10.1109/MIS.2024.3477109
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10779331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10779331</ieee_id><sourcerecordid>10779331</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-1068e6a45ebdf101902eea6ad05856470f52feb9831accf0a8401a271e0af27f3</originalsourceid><addsrcrecordid>eNotjE1PwzAQRH0AiVJ658DBfyBh13bi5ISqiH6ghh4K52qbrIVRiFFiJPj3RJTLPGneaIS4RUgRobyvt4dUgTKpNtZOxYWYYWYwwdyqK3E9ju8ASgMWM_G0HFiuwlffUvShl3VouRtlfGP5zN8xWXPPw1kdQuOpkzW3nmQV-sh9_NtPPgzjw424dNSNvPjnXLyuHl-qTbLbr7fVcpd4hDwmUxSck8n41DoELEExU04tZEWWGwsuU45PZaGRmsYBFQaQlEUGcso6PRd351_PzMfPwX_Q8HNEsLbUGvUv-jxJ2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Are Foundation Models the Next-Generation Social Media Content Moderators?</title><source>IEEE Electronic Library (IEL)</source><creator>Nadeem, Mohammad ; Javed, Laeeba ; Sohail, Shahab Saquib ; Cambria, Erik ; Hussain, Amir ; Cambria, Erik</creator><creatorcontrib>Nadeem, Mohammad ; Javed, Laeeba ; Sohail, Shahab Saquib ; Cambria, Erik ; Hussain, Amir ; Cambria, Erik</creatorcontrib><description>Recent progress in artificial intelligence (AI) tools and systems has been significant, especially in their reasoning and efficiency. Notable examples include generative AI-based large language models (LLMs) like Generative Pre-trained Transformer 3.5 (GPT-3.5), GPT-4, and Gemini, among others. In our work, we evaluated the effectiveness of fine-tuned deep learning models compared to general-purpose LLMs in moderating image-based content. We used deep learning models such as convolutional neural networks, ResNet50, and VGG-16, trained them for violence detection on an image dataset, and tested them on a separate dataset. The same test dataset was also evaluated using Large Language and Vision Assistant (LLaVa) and GPT-4, two LLMs that can process images. The results demonstrate that VGG-16 model had the highest accuracy at 0.94, while LLaVa had the lowest at 0.66. GPT-4 showed superiority over LLaVa with an accuracy value of 0.9242. LLaVa recorded the highest precision of all models.</description><identifier>ISSN: 1541-1672</identifier><identifier>DOI: 10.1109/MIS.2024.3477109</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Data models ; Deep learning ; Large language models ; Natural language processing ; Next generation networking ; Residual neural networks ; Social networking (online) ; Training ; Transformers</subject><ispartof>IEEE intelligent systems, 2024-11, Vol.39 (6), p.70-80</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8080-082X ; 0009-0009-9258-881X ; 0000-0003-3664-5014 ; 0000-0002-3030-1280 ; 0000-0002-5944-7371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10779331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10779331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nadeem, Mohammad</creatorcontrib><creatorcontrib>Javed, Laeeba</creatorcontrib><creatorcontrib>Sohail, Shahab Saquib</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><title>Are Foundation Models the Next-Generation Social Media Content Moderators?</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Recent progress in artificial intelligence (AI) tools and systems has been significant, especially in their reasoning and efficiency. Notable examples include generative AI-based large language models (LLMs) like Generative Pre-trained Transformer 3.5 (GPT-3.5), GPT-4, and Gemini, among others. In our work, we evaluated the effectiveness of fine-tuned deep learning models compared to general-purpose LLMs in moderating image-based content. We used deep learning models such as convolutional neural networks, ResNet50, and VGG-16, trained them for violence detection on an image dataset, and tested them on a separate dataset. The same test dataset was also evaluated using Large Language and Vision Assistant (LLaVa) and GPT-4, two LLMs that can process images. The results demonstrate that VGG-16 model had the highest accuracy at 0.94, while LLaVa had the lowest at 0.66. GPT-4 showed superiority over LLaVa with an accuracy value of 0.9242. LLaVa recorded the highest precision of all models.</description><subject>Accuracy</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Large language models</subject><subject>Natural language processing</subject><subject>Next generation networking</subject><subject>Residual neural networks</subject><subject>Social networking (online)</subject><subject>Training</subject><subject>Transformers</subject><issn>1541-1672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjE1PwzAQRH0AiVJ658DBfyBh13bi5ISqiH6ghh4K52qbrIVRiFFiJPj3RJTLPGneaIS4RUgRobyvt4dUgTKpNtZOxYWYYWYwwdyqK3E9ju8ASgMWM_G0HFiuwlffUvShl3VouRtlfGP5zN8xWXPPw1kdQuOpkzW3nmQV-sh9_NtPPgzjw424dNSNvPjnXLyuHl-qTbLbr7fVcpd4hDwmUxSck8n41DoELEExU04tZEWWGwsuU45PZaGRmsYBFQaQlEUGcso6PRd351_PzMfPwX_Q8HNEsLbUGvUv-jxJ2A</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Nadeem, Mohammad</creator><creator>Javed, Laeeba</creator><creator>Sohail, Shahab Saquib</creator><creator>Cambria, Erik</creator><creator>Hussain, Amir</creator><creator>Cambria, Erik</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-8080-082X</orcidid><orcidid>https://orcid.org/0009-0009-9258-881X</orcidid><orcidid>https://orcid.org/0000-0003-3664-5014</orcidid><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0002-5944-7371</orcidid></search><sort><creationdate>202411</creationdate><title>Are Foundation Models the Next-Generation Social Media Content Moderators?</title><author>Nadeem, Mohammad ; Javed, Laeeba ; Sohail, Shahab Saquib ; Cambria, Erik ; Hussain, Amir ; Cambria, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-1068e6a45ebdf101902eea6ad05856470f52feb9831accf0a8401a271e0af27f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Large language models</topic><topic>Natural language processing</topic><topic>Next generation networking</topic><topic>Residual neural networks</topic><topic>Social networking (online)</topic><topic>Training</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadeem, Mohammad</creatorcontrib><creatorcontrib>Javed, Laeeba</creatorcontrib><creatorcontrib>Sohail, Shahab Saquib</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nadeem, Mohammad</au><au>Javed, Laeeba</au><au>Sohail, Shahab Saquib</au><au>Cambria, Erik</au><au>Hussain, Amir</au><au>Cambria, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are Foundation Models the Next-Generation Social Media Content Moderators?</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2024-11</date><risdate>2024</risdate><volume>39</volume><issue>6</issue><spage>70</spage><epage>80</epage><pages>70-80</pages><issn>1541-1672</issn><coden>IISYF7</coden><abstract>Recent progress in artificial intelligence (AI) tools and systems has been significant, especially in their reasoning and efficiency. Notable examples include generative AI-based large language models (LLMs) like Generative Pre-trained Transformer 3.5 (GPT-3.5), GPT-4, and Gemini, among others. In our work, we evaluated the effectiveness of fine-tuned deep learning models compared to general-purpose LLMs in moderating image-based content. We used deep learning models such as convolutional neural networks, ResNet50, and VGG-16, trained them for violence detection on an image dataset, and tested them on a separate dataset. The same test dataset was also evaluated using Large Language and Vision Assistant (LLaVa) and GPT-4, two LLMs that can process images. The results demonstrate that VGG-16 model had the highest accuracy at 0.94, while LLaVa had the lowest at 0.66. GPT-4 showed superiority over LLaVa with an accuracy value of 0.9242. LLaVa recorded the highest precision of all models.</abstract><pub>IEEE</pub><doi>10.1109/MIS.2024.3477109</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8080-082X</orcidid><orcidid>https://orcid.org/0009-0009-9258-881X</orcidid><orcidid>https://orcid.org/0000-0003-3664-5014</orcidid><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid><orcidid>https://orcid.org/0000-0002-5944-7371</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2024-11, Vol.39 (6), p.70-80
issn 1541-1672
language eng
recordid cdi_ieee_primary_10779331
source IEEE Electronic Library (IEL)
subjects Accuracy
Data models
Deep learning
Large language models
Natural language processing
Next generation networking
Residual neural networks
Social networking (online)
Training
Transformers
title Are Foundation Models the Next-Generation Social Media Content Moderators?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20Foundation%20Models%20the%20Next-Generation%20Social%20Media%20Content%20Moderators?&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Nadeem,%20Mohammad&rft.date=2024-11&rft.volume=39&rft.issue=6&rft.spage=70&rft.epage=80&rft.pages=70-80&rft.issn=1541-1672&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2024.3477109&rft_dat=%3Cieee_RIE%3E10779331%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10779331&rfr_iscdi=true