Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion
Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from c...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2025, p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | |
creator | Yu, Jixiang Chen, Nanjun Cao, Linlin Gao, Ming Liu, Daizong Wang, Fuzhou Lin, Qiuzhen Li, Xiangtao Wong, Ka-Chun |
description | Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development. |
doi_str_mv | 10.1109/JBHI.2024.3511657 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10778552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10778552</ieee_id><sourcerecordid>10_1109_JBHI_2024_3511657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632-8f39ea4e6ee71ca3377c3c08e339641aa43fb600f3f8c60291ad5d77243897d03</originalsourceid><addsrcrecordid>eNpNkF1LAkEUhocoSMwfEHQxf2BtPnbn49LWbA0hKCm6WsbZszqh4zKzIvbrW9Ogc_MeDu9zLh6EbikZUkr0_fNDMR0ywtIhzygVmbxAPUaFShgj6vJvpzq9RoMYv0g3qjtp0UOfbwcPYem-nV_ikW9dkhtvIeBx2C1xvt0snDet2_qIP1y7wuOdWSfvDva4ODQdGEyzwq_QBIjg298mnuxiFzfoqjbrCINz9tF88jjPi2T28jTNR7PECs4SVXMNJgUBIKk1nEtpuSUKONcipcakvF4IQmpeKysI09RUWSUlS7nSsiK8j-jprQ3bGAPUZRPcxoRDSUl5tFMe7ZRHO-XZTsfcnRgHAP_6UqosY_wHw8BhJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Jixiang ; Chen, Nanjun ; Cao, Linlin ; Gao, Ming ; Liu, Daizong ; Wang, Fuzhou ; Lin, Qiuzhen ; Li, Xiangtao ; Wong, Ka-Chun</creator><creatorcontrib>Yu, Jixiang ; Chen, Nanjun ; Cao, Linlin ; Gao, Ming ; Liu, Daizong ; Wang, Fuzhou ; Lin, Qiuzhen ; Li, Xiangtao ; Wong, Ka-Chun</creatorcontrib><description>Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3511657</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Biological system modeling ; Cancer ; Computer architecture ; Deep learning ; Drugs ; Feature extraction ; Graph Neural Networks ; Hypergraph Representations ; Microprocessors ; Synergistic Drug Combinations ; Training ; Urban areas</subject><ispartof>IEEE journal of biomedical and health informatics, 2025, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8502-1155 ; 0000-0001-6062-733X ; 0000-0003-2415-0401 ; 0000-0002-8716-9823 ; 0000-0001-8163-3253 ; 0000-0001-8179-4508 ; 0000-0002-9028-5382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10778552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10778552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Jixiang</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Cao, Linlin</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Daizong</creatorcontrib><creatorcontrib>Wang, Fuzhou</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Li, Xiangtao</creatorcontrib><creatorcontrib>Wong, Ka-Chun</creatorcontrib><title>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.</description><subject>Biological cells</subject><subject>Biological system modeling</subject><subject>Cancer</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Drugs</subject><subject>Feature extraction</subject><subject>Graph Neural Networks</subject><subject>Hypergraph Representations</subject><subject>Microprocessors</subject><subject>Synergistic Drug Combinations</subject><subject>Training</subject><subject>Urban areas</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LAkEUhocoSMwfEHQxf2BtPnbn49LWbA0hKCm6WsbZszqh4zKzIvbrW9Ogc_MeDu9zLh6EbikZUkr0_fNDMR0ywtIhzygVmbxAPUaFShgj6vJvpzq9RoMYv0g3qjtp0UOfbwcPYem-nV_ikW9dkhtvIeBx2C1xvt0snDet2_qIP1y7wuOdWSfvDva4ODQdGEyzwq_QBIjg298mnuxiFzfoqjbrCINz9tF88jjPi2T28jTNR7PECs4SVXMNJgUBIKk1nEtpuSUKONcipcakvF4IQmpeKysI09RUWSUlS7nSsiK8j-jprQ3bGAPUZRPcxoRDSUl5tFMe7ZRHO-XZTsfcnRgHAP_6UqosY_wHw8BhJg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yu, Jixiang</creator><creator>Chen, Nanjun</creator><creator>Cao, Linlin</creator><creator>Gao, Ming</creator><creator>Liu, Daizong</creator><creator>Wang, Fuzhou</creator><creator>Lin, Qiuzhen</creator><creator>Li, Xiangtao</creator><creator>Wong, Ka-Chun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8502-1155</orcidid><orcidid>https://orcid.org/0000-0001-6062-733X</orcidid><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8716-9823</orcidid><orcidid>https://orcid.org/0000-0001-8163-3253</orcidid><orcidid>https://orcid.org/0000-0001-8179-4508</orcidid><orcidid>https://orcid.org/0000-0002-9028-5382</orcidid></search><sort><creationdate>2025</creationdate><title>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</title><author>Yu, Jixiang ; Chen, Nanjun ; Cao, Linlin ; Gao, Ming ; Liu, Daizong ; Wang, Fuzhou ; Lin, Qiuzhen ; Li, Xiangtao ; Wong, Ka-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632-8f39ea4e6ee71ca3377c3c08e339641aa43fb600f3f8c60291ad5d77243897d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biological cells</topic><topic>Biological system modeling</topic><topic>Cancer</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Drugs</topic><topic>Feature extraction</topic><topic>Graph Neural Networks</topic><topic>Hypergraph Representations</topic><topic>Microprocessors</topic><topic>Synergistic Drug Combinations</topic><topic>Training</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jixiang</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Cao, Linlin</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Daizong</creatorcontrib><creatorcontrib>Wang, Fuzhou</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Li, Xiangtao</creatorcontrib><creatorcontrib>Wong, Ka-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Jixiang</au><au>Chen, Nanjun</au><au>Cao, Linlin</au><au>Gao, Ming</au><au>Liu, Daizong</au><au>Wang, Fuzhou</au><au>Lin, Qiuzhen</au><au>Li, Xiangtao</au><au>Wong, Ka-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.</abstract><pub>IEEE</pub><doi>10.1109/JBHI.2024.3511657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8502-1155</orcidid><orcidid>https://orcid.org/0000-0001-6062-733X</orcidid><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8716-9823</orcidid><orcidid>https://orcid.org/0000-0001-8163-3253</orcidid><orcidid>https://orcid.org/0000-0001-8179-4508</orcidid><orcidid>https://orcid.org/0000-0002-9028-5382</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2025, p.1-8 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_10778552 |
source | IEEE Electronic Library (IEL) |
subjects | Biological cells Biological system modeling Cancer Computer architecture Deep learning Drugs Feature extraction Graph Neural Networks Hypergraph Representations Microprocessors Synergistic Drug Combinations Training Urban areas |
title | Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergizing%20Anti-Cancer%20Drug%20Combinations%20With%20Dual-View%20Hypergraph%20Representation%20Fusion&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yu,%20Jixiang&rft.date=2025&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3511657&rft_dat=%3Ccrossref_RIE%3E10_1109_JBHI_2024_3511657%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10778552&rfr_iscdi=true |