Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion

Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2025, p.1-8
Hauptverfasser: Yu, Jixiang, Chen, Nanjun, Cao, Linlin, Gao, Ming, Liu, Daizong, Wang, Fuzhou, Lin, Qiuzhen, Li, Xiangtao, Wong, Ka-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE journal of biomedical and health informatics
container_volume
creator Yu, Jixiang
Chen, Nanjun
Cao, Linlin
Gao, Ming
Liu, Daizong
Wang, Fuzhou
Lin, Qiuzhen
Li, Xiangtao
Wong, Ka-Chun
description Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.
doi_str_mv 10.1109/JBHI.2024.3511657
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10778552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10778552</ieee_id><sourcerecordid>10_1109_JBHI_2024_3511657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632-8f39ea4e6ee71ca3377c3c08e339641aa43fb600f3f8c60291ad5d77243897d03</originalsourceid><addsrcrecordid>eNpNkF1LAkEUhocoSMwfEHQxf2BtPnbn49LWbA0hKCm6WsbZszqh4zKzIvbrW9Ogc_MeDu9zLh6EbikZUkr0_fNDMR0ywtIhzygVmbxAPUaFShgj6vJvpzq9RoMYv0g3qjtp0UOfbwcPYem-nV_ikW9dkhtvIeBx2C1xvt0snDet2_qIP1y7wuOdWSfvDva4ODQdGEyzwq_QBIjg298mnuxiFzfoqjbrCINz9tF88jjPi2T28jTNR7PECs4SVXMNJgUBIKk1nEtpuSUKONcipcakvF4IQmpeKysI09RUWSUlS7nSsiK8j-jprQ3bGAPUZRPcxoRDSUl5tFMe7ZRHO-XZTsfcnRgHAP_6UqosY_wHw8BhJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Jixiang ; Chen, Nanjun ; Cao, Linlin ; Gao, Ming ; Liu, Daizong ; Wang, Fuzhou ; Lin, Qiuzhen ; Li, Xiangtao ; Wong, Ka-Chun</creator><creatorcontrib>Yu, Jixiang ; Chen, Nanjun ; Cao, Linlin ; Gao, Ming ; Liu, Daizong ; Wang, Fuzhou ; Lin, Qiuzhen ; Li, Xiangtao ; Wong, Ka-Chun</creatorcontrib><description>Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3511657</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Biological system modeling ; Cancer ; Computer architecture ; Deep learning ; Drugs ; Feature extraction ; Graph Neural Networks ; Hypergraph Representations ; Microprocessors ; Synergistic Drug Combinations ; Training ; Urban areas</subject><ispartof>IEEE journal of biomedical and health informatics, 2025, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8502-1155 ; 0000-0001-6062-733X ; 0000-0003-2415-0401 ; 0000-0002-8716-9823 ; 0000-0001-8163-3253 ; 0000-0001-8179-4508 ; 0000-0002-9028-5382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10778552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10778552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Jixiang</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Cao, Linlin</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Daizong</creatorcontrib><creatorcontrib>Wang, Fuzhou</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Li, Xiangtao</creatorcontrib><creatorcontrib>Wong, Ka-Chun</creatorcontrib><title>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.</description><subject>Biological cells</subject><subject>Biological system modeling</subject><subject>Cancer</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Drugs</subject><subject>Feature extraction</subject><subject>Graph Neural Networks</subject><subject>Hypergraph Representations</subject><subject>Microprocessors</subject><subject>Synergistic Drug Combinations</subject><subject>Training</subject><subject>Urban areas</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LAkEUhocoSMwfEHQxf2BtPnbn49LWbA0hKCm6WsbZszqh4zKzIvbrW9Ogc_MeDu9zLh6EbikZUkr0_fNDMR0ywtIhzygVmbxAPUaFShgj6vJvpzq9RoMYv0g3qjtp0UOfbwcPYem-nV_ikW9dkhtvIeBx2C1xvt0snDet2_qIP1y7wuOdWSfvDva4ODQdGEyzwq_QBIjg298mnuxiFzfoqjbrCINz9tF88jjPi2T28jTNR7PECs4SVXMNJgUBIKk1nEtpuSUKONcipcakvF4IQmpeKysI09RUWSUlS7nSsiK8j-jprQ3bGAPUZRPcxoRDSUl5tFMe7ZRHO-XZTsfcnRgHAP_6UqosY_wHw8BhJg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Yu, Jixiang</creator><creator>Chen, Nanjun</creator><creator>Cao, Linlin</creator><creator>Gao, Ming</creator><creator>Liu, Daizong</creator><creator>Wang, Fuzhou</creator><creator>Lin, Qiuzhen</creator><creator>Li, Xiangtao</creator><creator>Wong, Ka-Chun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8502-1155</orcidid><orcidid>https://orcid.org/0000-0001-6062-733X</orcidid><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8716-9823</orcidid><orcidid>https://orcid.org/0000-0001-8163-3253</orcidid><orcidid>https://orcid.org/0000-0001-8179-4508</orcidid><orcidid>https://orcid.org/0000-0002-9028-5382</orcidid></search><sort><creationdate>2025</creationdate><title>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</title><author>Yu, Jixiang ; Chen, Nanjun ; Cao, Linlin ; Gao, Ming ; Liu, Daizong ; Wang, Fuzhou ; Lin, Qiuzhen ; Li, Xiangtao ; Wong, Ka-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632-8f39ea4e6ee71ca3377c3c08e339641aa43fb600f3f8c60291ad5d77243897d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biological cells</topic><topic>Biological system modeling</topic><topic>Cancer</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Drugs</topic><topic>Feature extraction</topic><topic>Graph Neural Networks</topic><topic>Hypergraph Representations</topic><topic>Microprocessors</topic><topic>Synergistic Drug Combinations</topic><topic>Training</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jixiang</creatorcontrib><creatorcontrib>Chen, Nanjun</creatorcontrib><creatorcontrib>Cao, Linlin</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Daizong</creatorcontrib><creatorcontrib>Wang, Fuzhou</creatorcontrib><creatorcontrib>Lin, Qiuzhen</creatorcontrib><creatorcontrib>Li, Xiangtao</creatorcontrib><creatorcontrib>Wong, Ka-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Jixiang</au><au>Chen, Nanjun</au><au>Cao, Linlin</au><au>Gao, Ming</au><au>Liu, Daizong</au><au>Wang, Fuzhou</au><au>Lin, Qiuzhen</au><au>Li, Xiangtao</au><au>Wong, Ka-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Drug combination therapy plays a vital role in disease treatment, including cancer, as it contributes to treatment efficacy and can alleviate the effect of drug resistance. Although clinical trials and screening may provide valuable information about synergistic drug combinations, they suffer from challenging combinatorial space. Multiple methods are proposed to address those issues. However, they still fail in making full use of global and local triplet context relationships of known synergistic combinations. To this end, a deep learning model which leverages dual view hypergraph representation fusion for synergistic drug combinations identification is proposed, namely DVHSyn. It first extracts the transcriptome features of cancer cell lines and molecular structures of drugs. Subsequently, by modeling the synergistic effect on a hypergraph, DVHSyn simultaneously learns the local and global context of the sample triplets via a hypergraph view and its expanded heterogeneous graph view. Finally, the learned representations of the above two branches are fused selectively to predict synergistic drug combinations. Experiment results demonstrate that DVHSyn surpasses six other competing methods. One case study also reflects that DVHSyn has the potential to predict novel synergistic drug combinations. Overall, our method is effective in identifying synergistic drug combinations and provides new insights for novel drug development.</abstract><pub>IEEE</pub><doi>10.1109/JBHI.2024.3511657</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8502-1155</orcidid><orcidid>https://orcid.org/0000-0001-6062-733X</orcidid><orcidid>https://orcid.org/0000-0003-2415-0401</orcidid><orcidid>https://orcid.org/0000-0002-8716-9823</orcidid><orcidid>https://orcid.org/0000-0001-8163-3253</orcidid><orcidid>https://orcid.org/0000-0001-8179-4508</orcidid><orcidid>https://orcid.org/0000-0002-9028-5382</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2025, p.1-8
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_10778552
source IEEE Electronic Library (IEL)
subjects Biological cells
Biological system modeling
Cancer
Computer architecture
Deep learning
Drugs
Feature extraction
Graph Neural Networks
Hypergraph Representations
Microprocessors
Synergistic Drug Combinations
Training
Urban areas
title Synergizing Anti-Cancer Drug Combinations With Dual-View Hypergraph Representation Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergizing%20Anti-Cancer%20Drug%20Combinations%20With%20Dual-View%20Hypergraph%20Representation%20Fusion&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Yu,%20Jixiang&rft.date=2025&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3511657&rft_dat=%3Ccrossref_RIE%3E10_1109_JBHI_2024_3511657%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10778552&rfr_iscdi=true