Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks

This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on miniaturization for air and space systems 2025, p.1-1
Hauptverfasser: Zhang, Yaxiu, Luan, Mingan, Chang, Zheng, Hamalainen, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE journal on miniaturization for air and space systems
container_volume
creator Zhang, Yaxiu
Luan, Mingan
Chang, Zheng
Hamalainen, Timo
description This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.
doi_str_mv 10.1109/JMASS.2024.3510808
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10777085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777085</ieee_id><sourcerecordid>10_1109_JMASS_2024_3510808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645-2eb60d127a260d808fd951e07961b1e9633c275d943fb844a45c318e50d48bf3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpDyAW_oGE8St2lqECCmpBIrx2kZNMiqFNkN0K8fekpIuu5nF1RqNDyDmDmDFIL-8XWZ7HHLiMhWJgwByREVc6iQRL5PFBf0omIXwCAAdptOEj8r7YrjYuypbYbugTurbpfIXr3TRH61vXLqMrG7Duw9Bt-4zmH9b3a-paOsAv2St9cx5XGAJ9wM1P57_CGTlp7CrgZF_HJL-5fp7Oovnj7d00m0dVIlXEsUygZlxb3tf-86ZOFUPQacJKhmkiRMW1qlMpmtJIaaWqBDOooJambMSY8OFq5bsQPDbFt3dr638LBsVOTvEvp9jJKfZyeuhigBwiHgBaazBK_AEhqGBZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yaxiu ; Luan, Mingan ; Chang, Zheng ; Hamalainen, Timo</creator><creatorcontrib>Zhang, Yaxiu ; Luan, Mingan ; Chang, Zheng ; Hamalainen, Timo</creatorcontrib><description>This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2024.3510808</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous aerial vehicles ; Channel allocation ; Deep reinforcement learning ; Heuristic algorithms ; multi-agent deep reinforcement learning ; Optimization ; Quality of service ; resource allocation ; Resource management ; spectrum sharing ; Throughput ; Trajectory optimization ; UAV ; Wireless networks</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2025, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3766-820X ; 0000-0002-2407-5889 ; 0000-0002-4168-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yaxiu</creatorcontrib><creatorcontrib>Luan, Mingan</creatorcontrib><creatorcontrib>Chang, Zheng</creatorcontrib><creatorcontrib>Hamalainen, Timo</creatorcontrib><title>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.</description><subject>Autonomous aerial vehicles</subject><subject>Channel allocation</subject><subject>Deep reinforcement learning</subject><subject>Heuristic algorithms</subject><subject>multi-agent deep reinforcement learning</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>spectrum sharing</subject><subject>Throughput</subject><subject>Trajectory optimization</subject><subject>UAV</subject><subject>Wireless networks</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpDyAW_oGE8St2lqECCmpBIrx2kZNMiqFNkN0K8fekpIuu5nF1RqNDyDmDmDFIL-8XWZ7HHLiMhWJgwByREVc6iQRL5PFBf0omIXwCAAdptOEj8r7YrjYuypbYbugTurbpfIXr3TRH61vXLqMrG7Duw9Bt-4zmH9b3a-paOsAv2St9cx5XGAJ9wM1P57_CGTlp7CrgZF_HJL-5fp7Oovnj7d00m0dVIlXEsUygZlxb3tf-86ZOFUPQacJKhmkiRMW1qlMpmtJIaaWqBDOooJambMSY8OFq5bsQPDbFt3dr638LBsVOTvEvp9jJKfZyeuhigBwiHgBaazBK_AEhqGBZ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Yaxiu</creator><creator>Luan, Mingan</creator><creator>Chang, Zheng</creator><creator>Hamalainen, Timo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3766-820X</orcidid><orcidid>https://orcid.org/0000-0002-2407-5889</orcidid><orcidid>https://orcid.org/0000-0002-4168-9102</orcidid></search><sort><creationdate>2025</creationdate><title>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</title><author>Zhang, Yaxiu ; Luan, Mingan ; Chang, Zheng ; Hamalainen, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645-2eb60d127a260d808fd951e07961b1e9633c275d943fb844a45c318e50d48bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Autonomous aerial vehicles</topic><topic>Channel allocation</topic><topic>Deep reinforcement learning</topic><topic>Heuristic algorithms</topic><topic>multi-agent deep reinforcement learning</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>spectrum sharing</topic><topic>Throughput</topic><topic>Trajectory optimization</topic><topic>UAV</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yaxiu</creatorcontrib><creatorcontrib>Luan, Mingan</creatorcontrib><creatorcontrib>Chang, Zheng</creatorcontrib><creatorcontrib>Hamalainen, Timo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yaxiu</au><au>Luan, Mingan</au><au>Chang, Zheng</au><au>Hamalainen, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.</abstract><pub>IEEE</pub><doi>10.1109/JMASS.2024.3510808</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3766-820X</orcidid><orcidid>https://orcid.org/0000-0002-2407-5889</orcidid><orcidid>https://orcid.org/0000-0002-4168-9102</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3164
ispartof IEEE journal on miniaturization for air and space systems, 2025, p.1-1
issn 2576-3164
2576-3164
language eng
recordid cdi_ieee_primary_10777085
source IEEE Electronic Library (IEL)
subjects Autonomous aerial vehicles
Channel allocation
Deep reinforcement learning
Heuristic algorithms
multi-agent deep reinforcement learning
Optimization
Quality of service
resource allocation
Resource management
spectrum sharing
Throughput
Trajectory optimization
UAV
Wireless networks
title Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Agent%20Reinforcement%20Learning-Based%20Resource%20Sharing%20in%20Multi-UAV%20Wireless%20Networks&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Zhang,%20Yaxiu&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2024.3510808&rft_dat=%3Ccrossref_RIE%3E10_1109_JMASS_2024_3510808%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777085&rfr_iscdi=true