Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks
This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-N...
Gespeichert in:
Veröffentlicht in: | IEEE journal on miniaturization for air and space systems 2025, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal on miniaturization for air and space systems |
container_volume | |
creator | Zhang, Yaxiu Luan, Mingan Chang, Zheng Hamalainen, Timo |
description | This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate. |
doi_str_mv | 10.1109/JMASS.2024.3510808 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10777085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10777085</ieee_id><sourcerecordid>10_1109_JMASS_2024_3510808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645-2eb60d127a260d808fd951e07961b1e9633c275d943fb844a45c318e50d48bf3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpDyAW_oGE8St2lqECCmpBIrx2kZNMiqFNkN0K8fekpIuu5nF1RqNDyDmDmDFIL-8XWZ7HHLiMhWJgwByREVc6iQRL5PFBf0omIXwCAAdptOEj8r7YrjYuypbYbugTurbpfIXr3TRH61vXLqMrG7Duw9Bt-4zmH9b3a-paOsAv2St9cx5XGAJ9wM1P57_CGTlp7CrgZF_HJL-5fp7Oovnj7d00m0dVIlXEsUygZlxb3tf-86ZOFUPQacJKhmkiRMW1qlMpmtJIaaWqBDOooJambMSY8OFq5bsQPDbFt3dr638LBsVOTvEvp9jJKfZyeuhigBwiHgBaazBK_AEhqGBZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yaxiu ; Luan, Mingan ; Chang, Zheng ; Hamalainen, Timo</creator><creatorcontrib>Zhang, Yaxiu ; Luan, Mingan ; Chang, Zheng ; Hamalainen, Timo</creatorcontrib><description>This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.</description><identifier>ISSN: 2576-3164</identifier><identifier>EISSN: 2576-3164</identifier><identifier>DOI: 10.1109/JMASS.2024.3510808</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous aerial vehicles ; Channel allocation ; Deep reinforcement learning ; Heuristic algorithms ; multi-agent deep reinforcement learning ; Optimization ; Quality of service ; resource allocation ; Resource management ; spectrum sharing ; Throughput ; Trajectory optimization ; UAV ; Wireless networks</subject><ispartof>IEEE journal on miniaturization for air and space systems, 2025, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3766-820X ; 0000-0002-2407-5889 ; 0000-0002-4168-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10777085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10777085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yaxiu</creatorcontrib><creatorcontrib>Luan, Mingan</creatorcontrib><creatorcontrib>Chang, Zheng</creatorcontrib><creatorcontrib>Hamalainen, Timo</creatorcontrib><title>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</title><title>IEEE journal on miniaturization for air and space systems</title><addtitle>JMASS</addtitle><description>This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.</description><subject>Autonomous aerial vehicles</subject><subject>Channel allocation</subject><subject>Deep reinforcement learning</subject><subject>Heuristic algorithms</subject><subject>multi-agent deep reinforcement learning</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>spectrum sharing</subject><subject>Throughput</subject><subject>Trajectory optimization</subject><subject>UAV</subject><subject>Wireless networks</subject><issn>2576-3164</issn><issn>2576-3164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpDyAW_oGE8St2lqECCmpBIrx2kZNMiqFNkN0K8fekpIuu5nF1RqNDyDmDmDFIL-8XWZ7HHLiMhWJgwByREVc6iQRL5PFBf0omIXwCAAdptOEj8r7YrjYuypbYbugTurbpfIXr3TRH61vXLqMrG7Duw9Bt-4zmH9b3a-paOsAv2St9cx5XGAJ9wM1P57_CGTlp7CrgZF_HJL-5fp7Oovnj7d00m0dVIlXEsUygZlxb3tf-86ZOFUPQacJKhmkiRMW1qlMpmtJIaaWqBDOooJambMSY8OFq5bsQPDbFt3dr638LBsVOTvEvp9jJKfZyeuhigBwiHgBaazBK_AEhqGBZ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Yaxiu</creator><creator>Luan, Mingan</creator><creator>Chang, Zheng</creator><creator>Hamalainen, Timo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3766-820X</orcidid><orcidid>https://orcid.org/0000-0002-2407-5889</orcidid><orcidid>https://orcid.org/0000-0002-4168-9102</orcidid></search><sort><creationdate>2025</creationdate><title>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</title><author>Zhang, Yaxiu ; Luan, Mingan ; Chang, Zheng ; Hamalainen, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645-2eb60d127a260d808fd951e07961b1e9633c275d943fb844a45c318e50d48bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Autonomous aerial vehicles</topic><topic>Channel allocation</topic><topic>Deep reinforcement learning</topic><topic>Heuristic algorithms</topic><topic>multi-agent deep reinforcement learning</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>spectrum sharing</topic><topic>Throughput</topic><topic>Trajectory optimization</topic><topic>UAV</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yaxiu</creatorcontrib><creatorcontrib>Luan, Mingan</creatorcontrib><creatorcontrib>Chang, Zheng</creatorcontrib><creatorcontrib>Hamalainen, Timo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal on miniaturization for air and space systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yaxiu</au><au>Luan, Mingan</au><au>Chang, Zheng</au><au>Hamalainen, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks</atitle><jtitle>IEEE journal on miniaturization for air and space systems</jtitle><stitle>JMASS</stitle><date>2025</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2576-3164</issn><eissn>2576-3164</eissn><coden>IJMAJI</coden><abstract>This paper investigates the resource sharing problem in a multi-unmanned aerial vehicle (UAV) wireless network by utilizing the multi-agent reinforcement learning (MARL) method. Specifically, the considered multi-UAV system involves two transmission modes, i.e., UAV-to-Device (U2D) mode and UAV-to-Network (U2N) mode, in which the U2D mode is allowed to reuse the spectrum of U2N mode to improve the spectrum efficiency. Then, we formulate an optimization problem to maximize the throughput of U2D links by jointly optimizing the channel allocation, power level selection, and UAV trajectory, while ensuring the communication quality of U2N links. Due to the highly complex and dynamic nature, as well as the challenging non-convex objective function and constraints, the resulting problem is hard to address. Accordingly, we propose a novel Multi-Agent Deep Deterministic Policy Gradient (MADDPG)-based resource allocation and multi-UAV trajectory optimization policy. Simulation results illustrate the efficacy of our method in improving the system transmission rate.</abstract><pub>IEEE</pub><doi>10.1109/JMASS.2024.3510808</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3766-820X</orcidid><orcidid>https://orcid.org/0000-0002-2407-5889</orcidid><orcidid>https://orcid.org/0000-0002-4168-9102</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2576-3164 |
ispartof | IEEE journal on miniaturization for air and space systems, 2025, p.1-1 |
issn | 2576-3164 2576-3164 |
language | eng |
recordid | cdi_ieee_primary_10777085 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous aerial vehicles Channel allocation Deep reinforcement learning Heuristic algorithms multi-agent deep reinforcement learning Optimization Quality of service resource allocation Resource management spectrum sharing Throughput Trajectory optimization UAV Wireless networks |
title | Multi-Agent Reinforcement Learning-Based Resource Sharing in Multi-UAV Wireless Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Agent%20Reinforcement%20Learning-Based%20Resource%20Sharing%20in%20Multi-UAV%20Wireless%20Networks&rft.jtitle=IEEE%20journal%20on%20miniaturization%20for%20air%20and%20space%20systems&rft.au=Zhang,%20Yaxiu&rft.date=2025&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2576-3164&rft.eissn=2576-3164&rft.coden=IJMAJI&rft_id=info:doi/10.1109/JMASS.2024.3510808&rft_dat=%3Ccrossref_RIE%3E10_1109_JMASS_2024_3510808%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10777085&rfr_iscdi=true |