Analyzing Data Incompleteness for MRI Data for Quality Enhancement

Magnetic resonance imaging (MRI) is a powerful medical imaging technique widely used for diagnosing various conditions because it provides detailed images of internal structures within the body. However, like any imaging modality, MRI images can be susceptible to artifacts that may arise from variou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.183542-183554
Hauptverfasser: Shanbhag, Sanjay, Raju, Supreetha, Gurupur, Varadraj P., Sowmya Kamath, S., Kandala, Rajesh N. V. P. S., Trader, Elizabeth A., Lal, Shyam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183554
container_issue
container_start_page 183542
container_title IEEE access
container_volume 12
creator Shanbhag, Sanjay
Raju, Supreetha
Gurupur, Varadraj P.
Sowmya Kamath, S.
Kandala, Rajesh N. V. P. S.
Trader, Elizabeth A.
Lal, Shyam
description Magnetic resonance imaging (MRI) is a powerful medical imaging technique widely used for diagnosing various conditions because it provides detailed images of internal structures within the body. However, like any imaging modality, MRI images can be susceptible to artifacts that may arise from various sources, including hardware imperfections, patient motion, and image acquisition techniques. Detecting and mitigating these artifacts are crucial steps in ensuring MRI scans' reliability and clinical utility. In this paper, we present algorithms specifically designed to address the challenges of undersampling and motion artifacts in MR images. Our approach involves leveraging advanced image processing techniques, including line detection algorithms for undersampling detection and blur parameter estimation for motion artifact analysis. By accurately identifying and quantifying these artifacts, our algorithms aim to improve MRI data's overall quality and completeness, ultimately enhancing diagnostic accuracy and patient care.
doi_str_mv 10.1109/ACCESS.2024.3511384
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10776959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10776959</ieee_id><doaj_id>oai_doaj_org_article_f4bf97e8cd0a4afc9b57407451fcb67e</doaj_id><sourcerecordid>3143028791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2044-a2c1113a0dd0fbca7c1923dd6c451cdcbcaff63874dc8b2588be622b3ded3e7a3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpE8AhEucU_yVOjiUUiFSEoHC2HHtdUqVJsdNDeXpcUqH6svbszqz1IXRN8JQQnN_NimK-XE4ppnzKEkJYxs_QiJI0j1nC0vOT-yWaeL_G4WRBSsQI3c9a1ex_6nYVPaheRWWru822gR5a8D6ynYte3suhd3i87VRT9_to3n6pVsMG2v4KXVjVeJgc6xh9Ps4_iud48fpUFrNFrCnmPFZUk_A5hY3BttJKaJJTZkyqeUK00UGyNmWZ4EZnFU2yrIKU0ooZMAyEYmNUDrmmU2u5dfVGub3sVC3_hM6tpHJ9rRuQllc2F5BpgxVXVudVIjgWYZHVVSogZN0OWVvXfe_A93Ld7VxA4SUjnGGaiZyEKTZMadd578D-byVYHtjLgb08sJdH9sF1M7hqADhxCBGQ5-wXE76ABw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028791</pqid></control><display><type>article</type><title>Analyzing Data Incompleteness for MRI Data for Quality Enhancement</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shanbhag, Sanjay ; Raju, Supreetha ; Gurupur, Varadraj P. ; Sowmya Kamath, S. ; Kandala, Rajesh N. V. P. S. ; Trader, Elizabeth A. ; Lal, Shyam</creator><creatorcontrib>Shanbhag, Sanjay ; Raju, Supreetha ; Gurupur, Varadraj P. ; Sowmya Kamath, S. ; Kandala, Rajesh N. V. P. S. ; Trader, Elizabeth A. ; Lal, Shyam</creatorcontrib><description>Magnetic resonance imaging (MRI) is a powerful medical imaging technique widely used for diagnosing various conditions because it provides detailed images of internal structures within the body. However, like any imaging modality, MRI images can be susceptible to artifacts that may arise from various sources, including hardware imperfections, patient motion, and image acquisition techniques. Detecting and mitigating these artifacts are crucial steps in ensuring MRI scans' reliability and clinical utility. In this paper, we present algorithms specifically designed to address the challenges of undersampling and motion artifacts in MR images. Our approach involves leveraging advanced image processing techniques, including line detection algorithms for undersampling detection and blur parameter estimation for motion artifact analysis. By accurately identifying and quantifying these artifacts, our algorithms aim to improve MRI data's overall quality and completeness, ultimately enhancing diagnostic accuracy and patient care.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3511384</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artifact identification ; Data analysis ; Data incompleteness ; Data models ; diagnostic image quality ; Encoding ; Euclidean distance ; Fast Fourier transforms ; Image acquisition ; Image processing ; Image quality ; Image reconstruction ; Imaging techniques ; Liver ; Magnetic resonance imaging ; Medical imaging ; Motion artifacts ; Motion perception ; Parameter estimation ; Parameter identification ; Transfer learning ; under-sampling detection</subject><ispartof>IEEE access, 2024, Vol.12, p.183542-183554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2044-a2c1113a0dd0fbca7c1923dd6c451cdcbcaff63874dc8b2588be622b3ded3e7a3</cites><orcidid>0000-0003-4344-1837 ; 0000-0002-4355-6354 ; 0000-0003-3751-0453 ; 0000-0003-1596-9298 ; 0000-0002-0888-7238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10776959$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Shanbhag, Sanjay</creatorcontrib><creatorcontrib>Raju, Supreetha</creatorcontrib><creatorcontrib>Gurupur, Varadraj P.</creatorcontrib><creatorcontrib>Sowmya Kamath, S.</creatorcontrib><creatorcontrib>Kandala, Rajesh N. V. P. S.</creatorcontrib><creatorcontrib>Trader, Elizabeth A.</creatorcontrib><creatorcontrib>Lal, Shyam</creatorcontrib><title>Analyzing Data Incompleteness for MRI Data for Quality Enhancement</title><title>IEEE access</title><addtitle>Access</addtitle><description>Magnetic resonance imaging (MRI) is a powerful medical imaging technique widely used for diagnosing various conditions because it provides detailed images of internal structures within the body. However, like any imaging modality, MRI images can be susceptible to artifacts that may arise from various sources, including hardware imperfections, patient motion, and image acquisition techniques. Detecting and mitigating these artifacts are crucial steps in ensuring MRI scans' reliability and clinical utility. In this paper, we present algorithms specifically designed to address the challenges of undersampling and motion artifacts in MR images. Our approach involves leveraging advanced image processing techniques, including line detection algorithms for undersampling detection and blur parameter estimation for motion artifact analysis. By accurately identifying and quantifying these artifacts, our algorithms aim to improve MRI data's overall quality and completeness, ultimately enhancing diagnostic accuracy and patient care.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artifact identification</subject><subject>Data analysis</subject><subject>Data incompleteness</subject><subject>Data models</subject><subject>diagnostic image quality</subject><subject>Encoding</subject><subject>Euclidean distance</subject><subject>Fast Fourier transforms</subject><subject>Image acquisition</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Motion artifacts</subject><subject>Motion perception</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Transfer learning</subject><subject>under-sampling detection</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwzAQhC0EElXpE8AhEucU_yVOjiUUiFSEoHC2HHtdUqVJsdNDeXpcUqH6svbszqz1IXRN8JQQnN_NimK-XE4ppnzKEkJYxs_QiJI0j1nC0vOT-yWaeL_G4WRBSsQI3c9a1ex_6nYVPaheRWWru822gR5a8D6ynYte3suhd3i87VRT9_to3n6pVsMG2v4KXVjVeJgc6xh9Ps4_iud48fpUFrNFrCnmPFZUk_A5hY3BttJKaJJTZkyqeUK00UGyNmWZ4EZnFU2yrIKU0ooZMAyEYmNUDrmmU2u5dfVGub3sVC3_hM6tpHJ9rRuQllc2F5BpgxVXVudVIjgWYZHVVSogZN0OWVvXfe_A93Ld7VxA4SUjnGGaiZyEKTZMadd578D-byVYHtjLgb08sJdH9sF1M7hqADhxCBGQ5-wXE76ABw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shanbhag, Sanjay</creator><creator>Raju, Supreetha</creator><creator>Gurupur, Varadraj P.</creator><creator>Sowmya Kamath, S.</creator><creator>Kandala, Rajesh N. V. P. S.</creator><creator>Trader, Elizabeth A.</creator><creator>Lal, Shyam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4344-1837</orcidid><orcidid>https://orcid.org/0000-0002-4355-6354</orcidid><orcidid>https://orcid.org/0000-0003-3751-0453</orcidid><orcidid>https://orcid.org/0000-0003-1596-9298</orcidid><orcidid>https://orcid.org/0000-0002-0888-7238</orcidid></search><sort><creationdate>2024</creationdate><title>Analyzing Data Incompleteness for MRI Data for Quality Enhancement</title><author>Shanbhag, Sanjay ; Raju, Supreetha ; Gurupur, Varadraj P. ; Sowmya Kamath, S. ; Kandala, Rajesh N. V. P. S. ; Trader, Elizabeth A. ; Lal, Shyam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2044-a2c1113a0dd0fbca7c1923dd6c451cdcbcaff63874dc8b2588be622b3ded3e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artifact identification</topic><topic>Data analysis</topic><topic>Data incompleteness</topic><topic>Data models</topic><topic>diagnostic image quality</topic><topic>Encoding</topic><topic>Euclidean distance</topic><topic>Fast Fourier transforms</topic><topic>Image acquisition</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Motion artifacts</topic><topic>Motion perception</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Transfer learning</topic><topic>under-sampling detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanbhag, Sanjay</creatorcontrib><creatorcontrib>Raju, Supreetha</creatorcontrib><creatorcontrib>Gurupur, Varadraj P.</creatorcontrib><creatorcontrib>Sowmya Kamath, S.</creatorcontrib><creatorcontrib>Kandala, Rajesh N. V. P. S.</creatorcontrib><creatorcontrib>Trader, Elizabeth A.</creatorcontrib><creatorcontrib>Lal, Shyam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanbhag, Sanjay</au><au>Raju, Supreetha</au><au>Gurupur, Varadraj P.</au><au>Sowmya Kamath, S.</au><au>Kandala, Rajesh N. V. P. S.</au><au>Trader, Elizabeth A.</au><au>Lal, Shyam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Data Incompleteness for MRI Data for Quality Enhancement</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>183542</spage><epage>183554</epage><pages>183542-183554</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Magnetic resonance imaging (MRI) is a powerful medical imaging technique widely used for diagnosing various conditions because it provides detailed images of internal structures within the body. However, like any imaging modality, MRI images can be susceptible to artifacts that may arise from various sources, including hardware imperfections, patient motion, and image acquisition techniques. Detecting and mitigating these artifacts are crucial steps in ensuring MRI scans' reliability and clinical utility. In this paper, we present algorithms specifically designed to address the challenges of undersampling and motion artifacts in MR images. Our approach involves leveraging advanced image processing techniques, including line detection algorithms for undersampling detection and blur parameter estimation for motion artifact analysis. By accurately identifying and quantifying these artifacts, our algorithms aim to improve MRI data's overall quality and completeness, ultimately enhancing diagnostic accuracy and patient care.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3511384</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4344-1837</orcidid><orcidid>https://orcid.org/0000-0002-4355-6354</orcidid><orcidid>https://orcid.org/0000-0003-3751-0453</orcidid><orcidid>https://orcid.org/0000-0003-1596-9298</orcidid><orcidid>https://orcid.org/0000-0002-0888-7238</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.183542-183554
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10776959
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Artifact identification
Data analysis
Data incompleteness
Data models
diagnostic image quality
Encoding
Euclidean distance
Fast Fourier transforms
Image acquisition
Image processing
Image quality
Image reconstruction
Imaging techniques
Liver
Magnetic resonance imaging
Medical imaging
Motion artifacts
Motion perception
Parameter estimation
Parameter identification
Transfer learning
under-sampling detection
title Analyzing Data Incompleteness for MRI Data for Quality Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Data%20Incompleteness%20for%20MRI%20Data%20for%20Quality%20Enhancement&rft.jtitle=IEEE%20access&rft.au=Shanbhag,%20Sanjay&rft.date=2024&rft.volume=12&rft.spage=183542&rft.epage=183554&rft.pages=183542-183554&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3511384&rft_dat=%3Cproquest_ieee_%3E3143028791%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143028791&rft_id=info:pmid/&rft_ieee_id=10776959&rft_doaj_id=oai_doaj_org_article_f4bf97e8cd0a4afc9b57407451fcb67e&rfr_iscdi=true