HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection

Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.182799-182813
Hauptverfasser: Bui Ngoc Han, Nguyen, Lee, Ju-Hwan, Thanh Vu, Dang, Murtza, Iqbal, Kim, Hyoung-Gook, Kim, Jin-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182813
container_issue
container_start_page 182799
container_title IEEE access
container_volume 12
creator Bui Ngoc Han, Nguyen
Lee, Ju-Hwan
Thanh Vu, Dang
Murtza, Iqbal
Kim, Hyoung-Gook
Kim, Jin-Young
description Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .
doi_str_mv 10.1109/ACCESS.2024.3504399
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10776948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10776948</ieee_id><doaj_id>oai_doaj_org_article_8abd5172e9ec4296b261c076a0a5dd4b</doaj_id><sourcerecordid>3143028726</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1156-788560026a86654f258b9537050a09170b5f4532f9ad64872bd77f2bec2b14143</originalsourceid><addsrcrecordid>eNo9jt1LwzAUxYMgOOb-An0o-Nx58534Vmv3AQPB6XNJmlQ7tqWm9cH_3uiGFy4XfvdwzkHoBsMcY9D3RVlW2-2cAGFzyoFRrS_QhGChc8qpuEKzYdhBGpUQlxO0XBWLl6p6yIps5c14MH3-aAbvsuLYfISYL6L32ZMffTOGmLVpi77f_6I2ofOnC8drdNma_eBn5ztFb4vqtVzlm-fluiw2ucOYi1wqxQUAEUYJwVlLuLKaUwkcDGgswfKWcUpabZxgShLrpGyJ9Q2xmGFGp2h98nXB7Oo-dgcTv-tguvoPhPhemzh2zd7XyljHsSRe-4YRLSwRuAEpDBjuHLPJ6-7k1cfw-eWHsd6Fr3hM9WuaooCkfJFUtydV573_T8QgpdBM0R8SpWtU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028726</pqid></control><display><type>article</type><title>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bui Ngoc Han, Nguyen ; Lee, Ju-Hwan ; Thanh Vu, Dang ; Murtza, Iqbal ; Kim, Hyoung-Gook ; Kim, Jin-Young</creator><creatorcontrib>Bui Ngoc Han, Nguyen ; Lee, Ju-Hwan ; Thanh Vu, Dang ; Murtza, Iqbal ; Kim, Hyoung-Gook ; Kim, Jin-Young</creatorcontrib><description>Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3504399</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural engineering ; Anchor-free detector ; Annotations ; Crops ; Datasets ; deep learning ; Defect detection ; Defects ; Detectors ; Feature extraction ; fruit dataset ; Gaussian map ; Heating systems ; Location awareness ; object detection ; subtle defect detection ; Surface defects ; Surface morphology ; Training ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.182799-182813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7541-8581 ; 0000-0003-0743-8251 ; 0000-0002-4896-8980 ; 0009-0007-7462-662X ; 0000-0002-1553-9637 ; 0000-0002-1518-4100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10776948$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bui Ngoc Han, Nguyen</creatorcontrib><creatorcontrib>Lee, Ju-Hwan</creatorcontrib><creatorcontrib>Thanh Vu, Dang</creatorcontrib><creatorcontrib>Murtza, Iqbal</creatorcontrib><creatorcontrib>Kim, Hyoung-Gook</creatorcontrib><creatorcontrib>Kim, Jin-Young</creatorcontrib><title>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .</description><subject>Agricultural engineering</subject><subject>Anchor-free detector</subject><subject>Annotations</subject><subject>Crops</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Defect detection</subject><subject>Defects</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>fruit dataset</subject><subject>Gaussian map</subject><subject>Heating systems</subject><subject>Location awareness</subject><subject>object detection</subject><subject>subtle defect detection</subject><subject>Surface defects</subject><subject>Surface morphology</subject><subject>Training</subject><subject>YOLO</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9jt1LwzAUxYMgOOb-An0o-Nx58534Vmv3AQPB6XNJmlQ7tqWm9cH_3uiGFy4XfvdwzkHoBsMcY9D3RVlW2-2cAGFzyoFRrS_QhGChc8qpuEKzYdhBGpUQlxO0XBWLl6p6yIps5c14MH3-aAbvsuLYfISYL6L32ZMffTOGmLVpi77f_6I2ofOnC8drdNma_eBn5ztFb4vqtVzlm-fluiw2ucOYi1wqxQUAEUYJwVlLuLKaUwkcDGgswfKWcUpabZxgShLrpGyJ9Q2xmGFGp2h98nXB7Oo-dgcTv-tguvoPhPhemzh2zd7XyljHsSRe-4YRLSwRuAEpDBjuHLPJ6-7k1cfw-eWHsd6Fr3hM9WuaooCkfJFUtydV573_T8QgpdBM0R8SpWtU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bui Ngoc Han, Nguyen</creator><creator>Lee, Ju-Hwan</creator><creator>Thanh Vu, Dang</creator><creator>Murtza, Iqbal</creator><creator>Kim, Hyoung-Gook</creator><creator>Kim, Jin-Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7541-8581</orcidid><orcidid>https://orcid.org/0000-0003-0743-8251</orcidid><orcidid>https://orcid.org/0000-0002-4896-8980</orcidid><orcidid>https://orcid.org/0009-0007-7462-662X</orcidid><orcidid>https://orcid.org/0000-0002-1553-9637</orcidid><orcidid>https://orcid.org/0000-0002-1518-4100</orcidid></search><sort><creationdate>2024</creationdate><title>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</title><author>Bui Ngoc Han, Nguyen ; Lee, Ju-Hwan ; Thanh Vu, Dang ; Murtza, Iqbal ; Kim, Hyoung-Gook ; Kim, Jin-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1156-788560026a86654f258b9537050a09170b5f4532f9ad64872bd77f2bec2b14143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural engineering</topic><topic>Anchor-free detector</topic><topic>Annotations</topic><topic>Crops</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Defect detection</topic><topic>Defects</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>fruit dataset</topic><topic>Gaussian map</topic><topic>Heating systems</topic><topic>Location awareness</topic><topic>object detection</topic><topic>subtle defect detection</topic><topic>Surface defects</topic><topic>Surface morphology</topic><topic>Training</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui Ngoc Han, Nguyen</creatorcontrib><creatorcontrib>Lee, Ju-Hwan</creatorcontrib><creatorcontrib>Thanh Vu, Dang</creatorcontrib><creatorcontrib>Murtza, Iqbal</creatorcontrib><creatorcontrib>Kim, Hyoung-Gook</creatorcontrib><creatorcontrib>Kim, Jin-Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui Ngoc Han, Nguyen</au><au>Lee, Ju-Hwan</au><au>Thanh Vu, Dang</au><au>Murtza, Iqbal</au><au>Kim, Hyoung-Gook</au><au>Kim, Jin-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>182799</spage><epage>182813</epage><pages>182799-182813</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3504399</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7541-8581</orcidid><orcidid>https://orcid.org/0000-0003-0743-8251</orcidid><orcidid>https://orcid.org/0000-0002-4896-8980</orcidid><orcidid>https://orcid.org/0009-0007-7462-662X</orcidid><orcidid>https://orcid.org/0000-0002-1553-9637</orcidid><orcidid>https://orcid.org/0000-0002-1518-4100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.182799-182813
issn 2169-3536
language eng
recordid cdi_ieee_primary_10776948
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Agricultural engineering
Anchor-free detector
Annotations
Crops
Datasets
deep learning
Defect detection
Defects
Detectors
Feature extraction
fruit dataset
Gaussian map
Heating systems
Location awareness
object detection
subtle defect detection
Surface defects
Surface morphology
Training
YOLO
title HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HAFREE:%20A%20Heatmap-Based%20Anchor-Free%20Detector%20for%20Apple%20Defect%20Detection&rft.jtitle=IEEE%20access&rft.au=Bui%20Ngoc%20Han,%20Nguyen&rft.date=2024&rft.volume=12&rft.spage=182799&rft.epage=182813&rft.pages=182799-182813&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3504399&rft_dat=%3Cproquest_ieee_%3E3143028726%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143028726&rft_id=info:pmid/&rft_ieee_id=10776948&rft_doaj_id=oai_doaj_org_article_8abd5172e9ec4296b261c076a0a5dd4b&rfr_iscdi=true