HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection
Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Ap...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.182799-182813 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182813 |
---|---|
container_issue | |
container_start_page | 182799 |
container_title | IEEE access |
container_volume | 12 |
creator | Bui Ngoc Han, Nguyen Lee, Ju-Hwan Thanh Vu, Dang Murtza, Iqbal Kim, Hyoung-Gook Kim, Jin-Young |
description | Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE . |
doi_str_mv | 10.1109/ACCESS.2024.3504399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10776948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10776948</ieee_id><doaj_id>oai_doaj_org_article_8abd5172e9ec4296b261c076a0a5dd4b</doaj_id><sourcerecordid>3143028726</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1156-788560026a86654f258b9537050a09170b5f4532f9ad64872bd77f2bec2b14143</originalsourceid><addsrcrecordid>eNo9jt1LwzAUxYMgOOb-An0o-Nx58534Vmv3AQPB6XNJmlQ7tqWm9cH_3uiGFy4XfvdwzkHoBsMcY9D3RVlW2-2cAGFzyoFRrS_QhGChc8qpuEKzYdhBGpUQlxO0XBWLl6p6yIps5c14MH3-aAbvsuLYfISYL6L32ZMffTOGmLVpi77f_6I2ofOnC8drdNma_eBn5ztFb4vqtVzlm-fluiw2ucOYi1wqxQUAEUYJwVlLuLKaUwkcDGgswfKWcUpabZxgShLrpGyJ9Q2xmGFGp2h98nXB7Oo-dgcTv-tguvoPhPhemzh2zd7XyljHsSRe-4YRLSwRuAEpDBjuHLPJ6-7k1cfw-eWHsd6Fr3hM9WuaooCkfJFUtydV573_T8QgpdBM0R8SpWtU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028726</pqid></control><display><type>article</type><title>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bui Ngoc Han, Nguyen ; Lee, Ju-Hwan ; Thanh Vu, Dang ; Murtza, Iqbal ; Kim, Hyoung-Gook ; Kim, Jin-Young</creator><creatorcontrib>Bui Ngoc Han, Nguyen ; Lee, Ju-Hwan ; Thanh Vu, Dang ; Murtza, Iqbal ; Kim, Hyoung-Gook ; Kim, Jin-Young</creatorcontrib><description>Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3504399</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural engineering ; Anchor-free detector ; Annotations ; Crops ; Datasets ; deep learning ; Defect detection ; Defects ; Detectors ; Feature extraction ; fruit dataset ; Gaussian map ; Heating systems ; Location awareness ; object detection ; subtle defect detection ; Surface defects ; Surface morphology ; Training ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.182799-182813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7541-8581 ; 0000-0003-0743-8251 ; 0000-0002-4896-8980 ; 0009-0007-7462-662X ; 0000-0002-1553-9637 ; 0000-0002-1518-4100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10776948$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bui Ngoc Han, Nguyen</creatorcontrib><creatorcontrib>Lee, Ju-Hwan</creatorcontrib><creatorcontrib>Thanh Vu, Dang</creatorcontrib><creatorcontrib>Murtza, Iqbal</creatorcontrib><creatorcontrib>Kim, Hyoung-Gook</creatorcontrib><creatorcontrib>Kim, Jin-Young</creatorcontrib><title>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .</description><subject>Agricultural engineering</subject><subject>Anchor-free detector</subject><subject>Annotations</subject><subject>Crops</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Defect detection</subject><subject>Defects</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>fruit dataset</subject><subject>Gaussian map</subject><subject>Heating systems</subject><subject>Location awareness</subject><subject>object detection</subject><subject>subtle defect detection</subject><subject>Surface defects</subject><subject>Surface morphology</subject><subject>Training</subject><subject>YOLO</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9jt1LwzAUxYMgOOb-An0o-Nx58534Vmv3AQPB6XNJmlQ7tqWm9cH_3uiGFy4XfvdwzkHoBsMcY9D3RVlW2-2cAGFzyoFRrS_QhGChc8qpuEKzYdhBGpUQlxO0XBWLl6p6yIps5c14MH3-aAbvsuLYfISYL6L32ZMffTOGmLVpi77f_6I2ofOnC8drdNma_eBn5ztFb4vqtVzlm-fluiw2ucOYi1wqxQUAEUYJwVlLuLKaUwkcDGgswfKWcUpabZxgShLrpGyJ9Q2xmGFGp2h98nXB7Oo-dgcTv-tguvoPhPhemzh2zd7XyljHsSRe-4YRLSwRuAEpDBjuHLPJ6-7k1cfw-eWHsd6Fr3hM9WuaooCkfJFUtydV573_T8QgpdBM0R8SpWtU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bui Ngoc Han, Nguyen</creator><creator>Lee, Ju-Hwan</creator><creator>Thanh Vu, Dang</creator><creator>Murtza, Iqbal</creator><creator>Kim, Hyoung-Gook</creator><creator>Kim, Jin-Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7541-8581</orcidid><orcidid>https://orcid.org/0000-0003-0743-8251</orcidid><orcidid>https://orcid.org/0000-0002-4896-8980</orcidid><orcidid>https://orcid.org/0009-0007-7462-662X</orcidid><orcidid>https://orcid.org/0000-0002-1553-9637</orcidid><orcidid>https://orcid.org/0000-0002-1518-4100</orcidid></search><sort><creationdate>2024</creationdate><title>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</title><author>Bui Ngoc Han, Nguyen ; Lee, Ju-Hwan ; Thanh Vu, Dang ; Murtza, Iqbal ; Kim, Hyoung-Gook ; Kim, Jin-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1156-788560026a86654f258b9537050a09170b5f4532f9ad64872bd77f2bec2b14143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural engineering</topic><topic>Anchor-free detector</topic><topic>Annotations</topic><topic>Crops</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Defect detection</topic><topic>Defects</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>fruit dataset</topic><topic>Gaussian map</topic><topic>Heating systems</topic><topic>Location awareness</topic><topic>object detection</topic><topic>subtle defect detection</topic><topic>Surface defects</topic><topic>Surface morphology</topic><topic>Training</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui Ngoc Han, Nguyen</creatorcontrib><creatorcontrib>Lee, Ju-Hwan</creatorcontrib><creatorcontrib>Thanh Vu, Dang</creatorcontrib><creatorcontrib>Murtza, Iqbal</creatorcontrib><creatorcontrib>Kim, Hyoung-Gook</creatorcontrib><creatorcontrib>Kim, Jin-Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui Ngoc Han, Nguyen</au><au>Lee, Ju-Hwan</au><au>Thanh Vu, Dang</au><au>Murtza, Iqbal</au><au>Kim, Hyoung-Gook</au><au>Kim, Jin-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>182799</spage><epage>182813</epage><pages>182799-182813</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate inspection of subtle defects on apple surfaces is necessary in agricultural engineering. However, existing methods often rely on expensive equipment and encounter difficulty in detecting small defect areas effectively. To address this challenge, we introduce the Subtle Surface Defects in Apples (SSDA) dataset, a custom dataset specifically collected and annotated for two defect types: scratches and pest damage. For benchmarking, we propose a heatmap-based anchor-free (HAFREE) detector, a novel end-to-end object detection architecture designed to localize subtle defects on apple surfaces. Unlike prior methods that rely on anchor boxes, HAFREE employs a heatmap-based approach to represent defects as keypoints using two-dimensional Gaussian heatmaps. We introduce a multiscale feature fusion block, targeting small objects by incorporating local and global contextual information. To mitigate overfitting, we also implement a patch training strategy incorporating full images and cropped patches during training as a regularizer. The proposed method achieves a mAP50 of 50.05% on the SSDA dataset, outperforming one- and two-stage anchor-based detectors and previous anchor-free approaches. Code is available at: https://github.com/nbngochan/HAFREE .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3504399</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7541-8581</orcidid><orcidid>https://orcid.org/0000-0003-0743-8251</orcidid><orcidid>https://orcid.org/0000-0002-4896-8980</orcidid><orcidid>https://orcid.org/0009-0007-7462-662X</orcidid><orcidid>https://orcid.org/0000-0002-1553-9637</orcidid><orcidid>https://orcid.org/0000-0002-1518-4100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.182799-182813 |
issn | 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10776948 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Agricultural engineering Anchor-free detector Annotations Crops Datasets deep learning Defect detection Defects Detectors Feature extraction fruit dataset Gaussian map Heating systems Location awareness object detection subtle defect detection Surface defects Surface morphology Training YOLO |
title | HAFREE: A Heatmap-Based Anchor-Free Detector for Apple Defect Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HAFREE:%20A%20Heatmap-Based%20Anchor-Free%20Detector%20for%20Apple%20Defect%20Detection&rft.jtitle=IEEE%20access&rft.au=Bui%20Ngoc%20Han,%20Nguyen&rft.date=2024&rft.volume=12&rft.spage=182799&rft.epage=182813&rft.pages=182799-182813&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3504399&rft_dat=%3Cproquest_ieee_%3E3143028726%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143028726&rft_id=info:pmid/&rft_ieee_id=10776948&rft_doaj_id=oai_doaj_org_article_8abd5172e9ec4296b261c076a0a5dd4b&rfr_iscdi=true |