Large-Scale RIS Enabled Air-Ground Channels: Near-Field Modeling and Analysis
Existing works mainly rely on the far-field planar-wave-based channel model to assess the performance of reconfigurable intelligent surface (RIS)-enabled wireless communication systems. However, when the transmitter and receiver are in near-field ranges, the investigation of the channel statistics b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on wireless communications |
container_volume | |
creator | Jiang, Hao Shi, Wangqi Zhang, Zaichen Pan, Cunhua Wu, Qingqing Shu, Feng Liu, Ruiqi Chen, Zhen Wang, Jiangzhou |
description | Existing works mainly rely on the far-field planar-wave-based channel model to assess the performance of reconfigurable intelligent surface (RIS)-enabled wireless communication systems. However, when the transmitter and receiver are in near-field ranges, the investigation of the channel statistics based on the planar-wave-based model will result in relatively low computing accuracy. To tackle this challenge, we initially develop an analytical framework for sub-array partitioning. This framework divides the large-scale RIS array into multiple sub-arrays, effectively reducing modeling complexity while maintaining acceptable accuracy. Then, we develop a beam domain channel model based on the proposed sub-array partition framework for large-scale RIS-enabled unmanned aerial vehicle (UAV)-to-vehicle communication systems, which can be used to efficiently capture the sparse features of RIS-enabled UAV-to-vehicle channels in both near-field and far-field ranges. Furthermore, some important propagation characteristics of the proposed channel model, including the spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (FCFs), channel capacities, and path loss statistics with respect to the different physical features of the RIS array and non-stationary properties of the channel model are derived and analyzed. Finally, simulation results are provided to demonstrate that the proposed framework is helpful to achieve a good tradeoff between the modeling complexity and accuracy for investigating the channel propagation characteristics, and therefore providing highly-efficient communications in RIS-enabled air-ground wireless networks. |
doi_str_mv | 10.1109/TWC.2024.3504839 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10776032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10776032</ieee_id><sourcerecordid>10_1109_TWC_2024_3504839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1049-5d5155fb516f684e70afc907a3fca7746dfa283a1de51ba1fb4447aab21e6e323</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqWwMzD4D7j42wlbFbWlUgsSLWKM3sSvS5BJkS2G_ntStQPT3XB3Oj2E3As-EYKXj9uPaiK51BNluC5UeUFGwpiCSamLy6NXlgnp7DW5yfmLc-GsMSOyXkHaIdu0EJG-LTd01kMT0dNpl9gi7X97T6tP6HuM-Ym-ICQ27zB6ut57jF2_ozAkpj3EQ-7yLbkKEDPenXVM3uezbfXMVq-LZTVdsVZwXTLjzfAtNEbYYAuNjkNoS-5AhRac09YHkIUC4dGIBkRotNYOoJECLSqpxoSfdtu0zzlhqH9S9w3pUAteH3HUA476iKM-4xgqD6dKh4j_4s5ZPiz-AelQWrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-Scale RIS Enabled Air-Ground Channels: Near-Field Modeling and Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Hao ; Shi, Wangqi ; Zhang, Zaichen ; Pan, Cunhua ; Wu, Qingqing ; Shu, Feng ; Liu, Ruiqi ; Chen, Zhen ; Wang, Jiangzhou</creator><creatorcontrib>Jiang, Hao ; Shi, Wangqi ; Zhang, Zaichen ; Pan, Cunhua ; Wu, Qingqing ; Shu, Feng ; Liu, Ruiqi ; Chen, Zhen ; Wang, Jiangzhou</creatorcontrib><description>Existing works mainly rely on the far-field planar-wave-based channel model to assess the performance of reconfigurable intelligent surface (RIS)-enabled wireless communication systems. However, when the transmitter and receiver are in near-field ranges, the investigation of the channel statistics based on the planar-wave-based model will result in relatively low computing accuracy. To tackle this challenge, we initially develop an analytical framework for sub-array partitioning. This framework divides the large-scale RIS array into multiple sub-arrays, effectively reducing modeling complexity while maintaining acceptable accuracy. Then, we develop a beam domain channel model based on the proposed sub-array partition framework for large-scale RIS-enabled unmanned aerial vehicle (UAV)-to-vehicle communication systems, which can be used to efficiently capture the sparse features of RIS-enabled UAV-to-vehicle channels in both near-field and far-field ranges. Furthermore, some important propagation characteristics of the proposed channel model, including the spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (FCFs), channel capacities, and path loss statistics with respect to the different physical features of the RIS array and non-stationary properties of the channel model are derived and analyzed. Finally, simulation results are provided to demonstrate that the proposed framework is helpful to achieve a good tradeoff between the modeling complexity and accuracy for investigating the channel propagation characteristics, and therefore providing highly-efficient communications in RIS-enabled air-ground wireless networks.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3504839</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Air to ground communication ; Analytical models ; Antenna arrays ; Atmospheric modeling ; Autonomous aerial vehicles ; Channel models ; Computational complexity ; Computational modeling ; near-field communications ; propagation characteristics ; Reconfigurable intelligent surface ; UAV-to-vehicle scenarios ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6757-4231 ; 0000-0003-0881-3594 ; 0000-0001-8018-9103 ; 0000-0002-0043-3266 ; 0000-0001-5286-7958 ; 0000-0003-0073-1965 ; 0000-0001-6091-1138 ; 0000-0003-4301-8713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10776032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10776032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Shi, Wangqi</creatorcontrib><creatorcontrib>Zhang, Zaichen</creatorcontrib><creatorcontrib>Pan, Cunhua</creatorcontrib><creatorcontrib>Wu, Qingqing</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><creatorcontrib>Liu, Ruiqi</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Wang, Jiangzhou</creatorcontrib><title>Large-Scale RIS Enabled Air-Ground Channels: Near-Field Modeling and Analysis</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Existing works mainly rely on the far-field planar-wave-based channel model to assess the performance of reconfigurable intelligent surface (RIS)-enabled wireless communication systems. However, when the transmitter and receiver are in near-field ranges, the investigation of the channel statistics based on the planar-wave-based model will result in relatively low computing accuracy. To tackle this challenge, we initially develop an analytical framework for sub-array partitioning. This framework divides the large-scale RIS array into multiple sub-arrays, effectively reducing modeling complexity while maintaining acceptable accuracy. Then, we develop a beam domain channel model based on the proposed sub-array partition framework for large-scale RIS-enabled unmanned aerial vehicle (UAV)-to-vehicle communication systems, which can be used to efficiently capture the sparse features of RIS-enabled UAV-to-vehicle channels in both near-field and far-field ranges. Furthermore, some important propagation characteristics of the proposed channel model, including the spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (FCFs), channel capacities, and path loss statistics with respect to the different physical features of the RIS array and non-stationary properties of the channel model are derived and analyzed. Finally, simulation results are provided to demonstrate that the proposed framework is helpful to achieve a good tradeoff between the modeling complexity and accuracy for investigating the channel propagation characteristics, and therefore providing highly-efficient communications in RIS-enabled air-ground wireless networks.</description><subject>Accuracy</subject><subject>Air to ground communication</subject><subject>Analytical models</subject><subject>Antenna arrays</subject><subject>Atmospheric modeling</subject><subject>Autonomous aerial vehicles</subject><subject>Channel models</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>near-field communications</subject><subject>propagation characteristics</subject><subject>Reconfigurable intelligent surface</subject><subject>UAV-to-vehicle scenarios</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAYhC0EEqWwMzD4D7j42wlbFbWlUgsSLWKM3sSvS5BJkS2G_ntStQPT3XB3Oj2E3As-EYKXj9uPaiK51BNluC5UeUFGwpiCSamLy6NXlgnp7DW5yfmLc-GsMSOyXkHaIdu0EJG-LTd01kMT0dNpl9gi7X97T6tP6HuM-Ym-ICQ27zB6ut57jF2_ozAkpj3EQ-7yLbkKEDPenXVM3uezbfXMVq-LZTVdsVZwXTLjzfAtNEbYYAuNjkNoS-5AhRac09YHkIUC4dGIBkRotNYOoJECLSqpxoSfdtu0zzlhqH9S9w3pUAteH3HUA476iKM-4xgqD6dKh4j_4s5ZPiz-AelQWrs</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Jiang, Hao</creator><creator>Shi, Wangqi</creator><creator>Zhang, Zaichen</creator><creator>Pan, Cunhua</creator><creator>Wu, Qingqing</creator><creator>Shu, Feng</creator><creator>Liu, Ruiqi</creator><creator>Chen, Zhen</creator><creator>Wang, Jiangzhou</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6757-4231</orcidid><orcidid>https://orcid.org/0000-0003-0881-3594</orcidid><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0002-0043-3266</orcidid><orcidid>https://orcid.org/0000-0001-5286-7958</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0001-6091-1138</orcidid><orcidid>https://orcid.org/0000-0003-4301-8713</orcidid></search><sort><creationdate>20241203</creationdate><title>Large-Scale RIS Enabled Air-Ground Channels: Near-Field Modeling and Analysis</title><author>Jiang, Hao ; Shi, Wangqi ; Zhang, Zaichen ; Pan, Cunhua ; Wu, Qingqing ; Shu, Feng ; Liu, Ruiqi ; Chen, Zhen ; Wang, Jiangzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1049-5d5155fb516f684e70afc907a3fca7746dfa283a1de51ba1fb4447aab21e6e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Air to ground communication</topic><topic>Analytical models</topic><topic>Antenna arrays</topic><topic>Atmospheric modeling</topic><topic>Autonomous aerial vehicles</topic><topic>Channel models</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>near-field communications</topic><topic>propagation characteristics</topic><topic>Reconfigurable intelligent surface</topic><topic>UAV-to-vehicle scenarios</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Shi, Wangqi</creatorcontrib><creatorcontrib>Zhang, Zaichen</creatorcontrib><creatorcontrib>Pan, Cunhua</creatorcontrib><creatorcontrib>Wu, Qingqing</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><creatorcontrib>Liu, Ruiqi</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Wang, Jiangzhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Hao</au><au>Shi, Wangqi</au><au>Zhang, Zaichen</au><au>Pan, Cunhua</au><au>Wu, Qingqing</au><au>Shu, Feng</au><au>Liu, Ruiqi</au><au>Chen, Zhen</au><au>Wang, Jiangzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale RIS Enabled Air-Ground Channels: Near-Field Modeling and Analysis</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-12-03</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Existing works mainly rely on the far-field planar-wave-based channel model to assess the performance of reconfigurable intelligent surface (RIS)-enabled wireless communication systems. However, when the transmitter and receiver are in near-field ranges, the investigation of the channel statistics based on the planar-wave-based model will result in relatively low computing accuracy. To tackle this challenge, we initially develop an analytical framework for sub-array partitioning. This framework divides the large-scale RIS array into multiple sub-arrays, effectively reducing modeling complexity while maintaining acceptable accuracy. Then, we develop a beam domain channel model based on the proposed sub-array partition framework for large-scale RIS-enabled unmanned aerial vehicle (UAV)-to-vehicle communication systems, which can be used to efficiently capture the sparse features of RIS-enabled UAV-to-vehicle channels in both near-field and far-field ranges. Furthermore, some important propagation characteristics of the proposed channel model, including the spatial cross-correlation functions (CCFs), temporal auto-correlation functions (ACFs), frequency correlation functions (FCFs), channel capacities, and path loss statistics with respect to the different physical features of the RIS array and non-stationary properties of the channel model are derived and analyzed. Finally, simulation results are provided to demonstrate that the proposed framework is helpful to achieve a good tradeoff between the modeling complexity and accuracy for investigating the channel propagation characteristics, and therefore providing highly-efficient communications in RIS-enabled air-ground wireless networks.</abstract><pub>IEEE</pub><doi>10.1109/TWC.2024.3504839</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6757-4231</orcidid><orcidid>https://orcid.org/0000-0003-0881-3594</orcidid><orcidid>https://orcid.org/0000-0001-8018-9103</orcidid><orcidid>https://orcid.org/0000-0002-0043-3266</orcidid><orcidid>https://orcid.org/0000-0001-5286-7958</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0001-6091-1138</orcidid><orcidid>https://orcid.org/0000-0003-4301-8713</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-12, p.1-1 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_10776032 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Air to ground communication Analytical models Antenna arrays Atmospheric modeling Autonomous aerial vehicles Channel models Computational complexity Computational modeling near-field communications propagation characteristics Reconfigurable intelligent surface UAV-to-vehicle scenarios Wireless communication |
title | Large-Scale RIS Enabled Air-Ground Channels: Near-Field Modeling and Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20RIS%20Enabled%20Air-Ground%20Channels:%20Near-Field%20Modeling%20and%20Analysis&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Jiang,%20Hao&rft.date=2024-12-03&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3504839&rft_dat=%3Ccrossref_RIE%3E10_1109_TWC_2024_3504839%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10776032&rfr_iscdi=true |