Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization

Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-12, p.1-21
Hauptverfasser: Naing, Htet, Cai, Wentong, Yu, Jinqiang, Zhong, Jinghui, Yu, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume
creator Naing, Htet
Cai, Wentong
Yu, Jinqiang
Zhong, Jinghui
Yu, Liang
description Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA + + , is proposed. Through the validation involving two real-world datasets, D3GA + + has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.
doi_str_mv 10.1109/TITS.2024.3502213
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10774187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10774187</ieee_id><sourcerecordid>10_1109_TITS_2024_3502213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-a5b41255fc8e6905404770f48d5c384574d493b7dbc398d938bd257431227ed93</originalsourceid><addsrcrecordid>eNpNUF1PwjAUbYwmIvoDTHzYHyj29oN2jwYQSTAkMuPj0nVdLGEb6QoJ-uftgAefzr0n59ycexB6BDICIOlztsjWI0ooHzFBKAV2hQYghMKEwPi6nynHKRHkFt113SayXAAM0O-rayyeex2hTDKvN9aE1h-TD2vapgt-b4Jrm6Q4Ju_O-LYz7c6ZXlhVEdeu3m_1SfHlwncyPTa6jvxUB42n3h1sk8wO7XbfS3Q8u9oFV7ufk-Ue3VR629mHCw7R5-ssm7zh5Wq-mLwssQGuAtai4ECFqIyy4_gCJ1xKUnFVCsMUF5KXPGWFLAvDUlWmTBUljSwDSqWN-xDB-W6fv_O2ynfe1TFNDiTv28v79vK-vfzSXvQ8nT3OWvtPLyUHJdkf6FhtxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Naing, Htet ; Cai, Wentong ; Yu, Jinqiang ; Zhong, Jinghui ; Yu, Liang</creator><creatorcontrib>Naing, Htet ; Cai, Wentong ; Yu, Jinqiang ; Zhong, Jinghui ; Yu, Liang</creatorcontrib><description><![CDATA[Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>, is proposed. Through the validation involving two real-world datasets, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.]]></description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3502213</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computational modeling ; Data models ; data-driven evolutionary optimization ; Global Positioning System ; Image reconstruction ; microscopic traffic simulation ; Microscopy ; Optimization ; surrogate-assisted evolutionary optimization ; Traffic control ; Trajectory ; Trajectory reconstruction ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, p.1-21</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>aswtcai@ntu.edu.sg ; htetnain001@e.ntu.edu.sg ; jinghuizhong@scut.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10774187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10774187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naing, Htet</creatorcontrib><creatorcontrib>Cai, Wentong</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Zhong, Jinghui</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><title>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description><![CDATA[Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>, is proposed. Through the validation involving two real-world datasets, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.]]></description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>data-driven evolutionary optimization</subject><subject>Global Positioning System</subject><subject>Image reconstruction</subject><subject>microscopic traffic simulation</subject><subject>Microscopy</subject><subject>Optimization</subject><subject>surrogate-assisted evolutionary optimization</subject><subject>Traffic control</subject><subject>Trajectory</subject><subject>Trajectory reconstruction</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUF1PwjAUbYwmIvoDTHzYHyj29oN2jwYQSTAkMuPj0nVdLGEb6QoJ-uftgAefzr0n59ycexB6BDICIOlztsjWI0ooHzFBKAV2hQYghMKEwPi6nynHKRHkFt113SayXAAM0O-rayyeex2hTDKvN9aE1h-TD2vapgt-b4Jrm6Q4Ju_O-LYz7c6ZXlhVEdeu3m_1SfHlwncyPTa6jvxUB42n3h1sk8wO7XbfS3Q8u9oFV7ufk-Ue3VR629mHCw7R5-ssm7zh5Wq-mLwssQGuAtai4ECFqIyy4_gCJ1xKUnFVCsMUF5KXPGWFLAvDUlWmTBUljSwDSqWN-xDB-W6fv_O2ynfe1TFNDiTv28v79vK-vfzSXvQ8nT3OWvtPLyUHJdkf6FhtxQ</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Naing, Htet</creator><creator>Cai, Wentong</creator><creator>Yu, Jinqiang</creator><creator>Zhong, Jinghui</creator><creator>Yu, Liang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/aswtcai@ntu.edu.sg</orcidid><orcidid>https://orcid.org/htetnain001@e.ntu.edu.sg</orcidid><orcidid>https://orcid.org/jinghuizhong@scut.edu.cn</orcidid></search><sort><creationdate>20241204</creationdate><title>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</title><author>Naing, Htet ; Cai, Wentong ; Yu, Jinqiang ; Zhong, Jinghui ; Yu, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-a5b41255fc8e6905404770f48d5c384574d493b7dbc398d938bd257431227ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>data-driven evolutionary optimization</topic><topic>Global Positioning System</topic><topic>Image reconstruction</topic><topic>microscopic traffic simulation</topic><topic>Microscopy</topic><topic>Optimization</topic><topic>surrogate-assisted evolutionary optimization</topic><topic>Traffic control</topic><topic>Trajectory</topic><topic>Trajectory reconstruction</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naing, Htet</creatorcontrib><creatorcontrib>Cai, Wentong</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Zhong, Jinghui</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naing, Htet</au><au>Cai, Wentong</au><au>Yu, Jinqiang</au><au>Zhong, Jinghui</au><au>Yu, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12-04</date><risdate>2024</risdate><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract><![CDATA[Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>, is proposed. Through the validation involving two real-world datasets, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.]]></abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3502213</doi><tpages>21</tpages><orcidid>https://orcid.org/aswtcai@ntu.edu.sg</orcidid><orcidid>https://orcid.org/htetnain001@e.ntu.edu.sg</orcidid><orcidid>https://orcid.org/jinghuizhong@scut.edu.cn</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-12, p.1-21
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10774187
source IEEE Electronic Library (IEL)
subjects Accuracy
Computational modeling
Data models
data-driven evolutionary optimization
Global Positioning System
Image reconstruction
microscopic traffic simulation
Microscopy
Optimization
surrogate-assisted evolutionary optimization
Traffic control
Trajectory
Trajectory reconstruction
Vehicle dynamics
title Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Grained%20Trajectory%20Reconstruction%20by%20Microscopic%20Traffic%20Simulation%20With%20Dynamic%20Data-Driven%20Evolutionary%20Optimization&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Naing,%20Htet&rft.date=2024-12-04&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3502213&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3502213%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10774187&rfr_iscdi=true