Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization
Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-12, p.1-21 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | |
creator | Naing, Htet Cai, Wentong Yu, Jinqiang Zhong, Jinghui Yu, Liang |
description | Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA + + , is proposed. Through the validation involving two real-world datasets, D3GA + + has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development. |
doi_str_mv | 10.1109/TITS.2024.3502213 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10774187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10774187</ieee_id><sourcerecordid>10_1109_TITS_2024_3502213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-a5b41255fc8e6905404770f48d5c384574d493b7dbc398d938bd257431227ed93</originalsourceid><addsrcrecordid>eNpNUF1PwjAUbYwmIvoDTHzYHyj29oN2jwYQSTAkMuPj0nVdLGEb6QoJ-uftgAefzr0n59ycexB6BDICIOlztsjWI0ooHzFBKAV2hQYghMKEwPi6nynHKRHkFt113SayXAAM0O-rayyeex2hTDKvN9aE1h-TD2vapgt-b4Jrm6Q4Ju_O-LYz7c6ZXlhVEdeu3m_1SfHlwncyPTa6jvxUB42n3h1sk8wO7XbfS3Q8u9oFV7ufk-Ue3VR629mHCw7R5-ssm7zh5Wq-mLwssQGuAtai4ECFqIyy4_gCJ1xKUnFVCsMUF5KXPGWFLAvDUlWmTBUljSwDSqWN-xDB-W6fv_O2ynfe1TFNDiTv28v79vK-vfzSXvQ8nT3OWvtPLyUHJdkf6FhtxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Naing, Htet ; Cai, Wentong ; Yu, Jinqiang ; Zhong, Jinghui ; Yu, Liang</creator><creatorcontrib>Naing, Htet ; Cai, Wentong ; Yu, Jinqiang ; Zhong, Jinghui ; Yu, Liang</creatorcontrib><description><![CDATA[Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>, is proposed. Through the validation involving two real-world datasets, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.]]></description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3502213</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computational modeling ; Data models ; data-driven evolutionary optimization ; Global Positioning System ; Image reconstruction ; microscopic traffic simulation ; Microscopy ; Optimization ; surrogate-assisted evolutionary optimization ; Traffic control ; Trajectory ; Trajectory reconstruction ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, p.1-21</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>aswtcai@ntu.edu.sg ; htetnain001@e.ntu.edu.sg ; jinghuizhong@scut.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10774187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10774187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naing, Htet</creatorcontrib><creatorcontrib>Cai, Wentong</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Zhong, Jinghui</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><title>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description><![CDATA[Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>, is proposed. Through the validation involving two real-world datasets, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.]]></description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>data-driven evolutionary optimization</subject><subject>Global Positioning System</subject><subject>Image reconstruction</subject><subject>microscopic traffic simulation</subject><subject>Microscopy</subject><subject>Optimization</subject><subject>surrogate-assisted evolutionary optimization</subject><subject>Traffic control</subject><subject>Trajectory</subject><subject>Trajectory reconstruction</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUF1PwjAUbYwmIvoDTHzYHyj29oN2jwYQSTAkMuPj0nVdLGEb6QoJ-uftgAefzr0n59ycexB6BDICIOlztsjWI0ooHzFBKAV2hQYghMKEwPi6nynHKRHkFt113SayXAAM0O-rayyeex2hTDKvN9aE1h-TD2vapgt-b4Jrm6Q4Ju_O-LYz7c6ZXlhVEdeu3m_1SfHlwncyPTa6jvxUB42n3h1sk8wO7XbfS3Q8u9oFV7ufk-Ue3VR629mHCw7R5-ssm7zh5Wq-mLwssQGuAtai4ECFqIyy4_gCJ1xKUnFVCsMUF5KXPGWFLAvDUlWmTBUljSwDSqWN-xDB-W6fv_O2ynfe1TFNDiTv28v79vK-vfzSXvQ8nT3OWvtPLyUHJdkf6FhtxQ</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Naing, Htet</creator><creator>Cai, Wentong</creator><creator>Yu, Jinqiang</creator><creator>Zhong, Jinghui</creator><creator>Yu, Liang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/aswtcai@ntu.edu.sg</orcidid><orcidid>https://orcid.org/htetnain001@e.ntu.edu.sg</orcidid><orcidid>https://orcid.org/jinghuizhong@scut.edu.cn</orcidid></search><sort><creationdate>20241204</creationdate><title>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</title><author>Naing, Htet ; Cai, Wentong ; Yu, Jinqiang ; Zhong, Jinghui ; Yu, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-a5b41255fc8e6905404770f48d5c384574d493b7dbc398d938bd257431227ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>data-driven evolutionary optimization</topic><topic>Global Positioning System</topic><topic>Image reconstruction</topic><topic>microscopic traffic simulation</topic><topic>Microscopy</topic><topic>Optimization</topic><topic>surrogate-assisted evolutionary optimization</topic><topic>Traffic control</topic><topic>Trajectory</topic><topic>Trajectory reconstruction</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naing, Htet</creatorcontrib><creatorcontrib>Cai, Wentong</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Zhong, Jinghui</creatorcontrib><creatorcontrib>Yu, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naing, Htet</au><au>Cai, Wentong</au><au>Yu, Jinqiang</au><au>Zhong, Jinghui</au><au>Yu, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12-04</date><risdate>2024</risdate><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract><![CDATA[Vehicle trajectory data are essential in smart mobility applications, yet often incomplete, necessitating systematic reconstruction for effective use. Existing methods often overlook traffic rules and vehicle interactions in their reconstruction process, a research gap that becomes critical for fine-grained reconstruction of incomplete and irregular microscopic traffic data. To address this limitation, this paper introduces a novel fine-grained trajectory reconstruction (FTR) framework, particularly for urban signalized intersections, considering both traffic rules and vehicle interactions through a microscopic traffic simulation (MTS) model. This is motivated by challenging missing patterns in real-world data from Alibaba City Brain Lab and limitations in existing reconstruction approaches. To this end, the FTR problem is first formulated as an MTS-based optimization problem. Then, to solve this problem effectively under a limited computing budget, an advanced dynamic data-driven evolutionary optimization technique, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula>, is proposed. Through the validation involving two real-world datasets, D3GA<inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">+</tex-math> </inline-formula> has demonstrated superior performance under various missing data scenarios consistently surpassing baselines such as brute-force random search and standard evolutionary algorithm in terms of reconstruction accuracy. Our work can have crucial implications for traffic management, urban planning, and autonomous vehicle technology development.]]></abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3502213</doi><tpages>21</tpages><orcidid>https://orcid.org/aswtcai@ntu.edu.sg</orcidid><orcidid>https://orcid.org/htetnain001@e.ntu.edu.sg</orcidid><orcidid>https://orcid.org/jinghuizhong@scut.edu.cn</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-12, p.1-21 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10774187 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Computational modeling Data models data-driven evolutionary optimization Global Positioning System Image reconstruction microscopic traffic simulation Microscopy Optimization surrogate-assisted evolutionary optimization Traffic control Trajectory Trajectory reconstruction Vehicle dynamics |
title | Fine-Grained Trajectory Reconstruction by Microscopic Traffic Simulation With Dynamic Data-Driven Evolutionary Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Grained%20Trajectory%20Reconstruction%20by%20Microscopic%20Traffic%20Simulation%20With%20Dynamic%20Data-Driven%20Evolutionary%20Optimization&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Naing,%20Htet&rft.date=2024-12-04&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3502213&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3502213%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10774187&rfr_iscdi=true |