De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies

In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-12, p.1-1
Hauptverfasser: Liao, Zhuofan, Shao, Zhenyi, Zheng, Bin, Tang, XiaoYong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE internet of things journal
container_volume
creator Liao, Zhuofan
Shao, Zhenyi
Zheng, Bin
Tang, XiaoYong
description In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.
doi_str_mv 10.1109/JIOT.2024.3510370
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10772571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10772571</ieee_id><sourcerecordid>10772571</sourcerecordid><originalsourceid>FETCH-ieee_primary_107725713</originalsourceid><addsrcrecordid>eNqFir0OgjAURhsTE4n6ACYOfQHwtvw0zIJBFxeibqaBC1QLkhYG315M3J2-nHM-QjYMPMYg3p2O59zjwAPPDxn4AmbE4T4XbhBFfEHW1j4AYLqGLI4cckvQTcZeq0IOWNJMoZGmaCbU9FxV-iVL1dVUdfSCkx21NDQta6T7V9uPw7dd1dDQXNonTbDHrsSuUGhXZF5JbXH92yXZHtJ8n7kKEe-9Ua007zsDIXgomP8nfwAWBEFI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhuofan ; Shao, Zhenyi ; Zheng, Bin ; Tang, XiaoYong</creator><creatorcontrib>Liao, Zhuofan ; Shao, Zhenyi ; Zheng, Bin ; Tang, XiaoYong</creatorcontrib><description>In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.</description><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3510370</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Clustering algorithms ; Computational modeling ; Delays ; Edge computing ; Energy consumption ; Internet of Things ; partial offloading ; resource allocation ; Resource management ; Roads ; Servers ; Task dependency ; vehicle clusters ; vehicular edge computing</subject><ispartof>IEEE internet of things journal, 2024-12, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5181-9150 ; 0000-0002-0151-7963 ; 0000-0002-6661-5900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10772571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10772571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhuofan</creatorcontrib><creatorcontrib>Shao, Zhenyi</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Tang, XiaoYong</creatorcontrib><title>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.</description><subject>Cloud computing</subject><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Internet of Things</subject><subject>partial offloading</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Roads</subject><subject>Servers</subject><subject>Task dependency</subject><subject>vehicle clusters</subject><subject>vehicular edge computing</subject><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFir0OgjAURhsTE4n6ACYOfQHwtvw0zIJBFxeibqaBC1QLkhYG315M3J2-nHM-QjYMPMYg3p2O59zjwAPPDxn4AmbE4T4XbhBFfEHW1j4AYLqGLI4cckvQTcZeq0IOWNJMoZGmaCbU9FxV-iVL1dVUdfSCkx21NDQta6T7V9uPw7dd1dDQXNonTbDHrsSuUGhXZF5JbXH92yXZHtJ8n7kKEe-9Ua007zsDIXgomP8nfwAWBEFI</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Liao, Zhuofan</creator><creator>Shao, Zhenyi</creator><creator>Zheng, Bin</creator><creator>Tang, XiaoYong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-5181-9150</orcidid><orcidid>https://orcid.org/0000-0002-0151-7963</orcidid><orcidid>https://orcid.org/0000-0002-6661-5900</orcidid></search><sort><creationdate>20241202</creationdate><title>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</title><author>Liao, Zhuofan ; Shao, Zhenyi ; Zheng, Bin ; Tang, XiaoYong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107725713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Internet of Things</topic><topic>partial offloading</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Roads</topic><topic>Servers</topic><topic>Task dependency</topic><topic>vehicle clusters</topic><topic>vehicular edge computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhuofan</creatorcontrib><creatorcontrib>Shao, Zhenyi</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Tang, XiaoYong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhuofan</au><au>Shao, Zhenyi</au><au>Zheng, Bin</au><au>Tang, XiaoYong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-12-02</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3510370</doi><orcidid>https://orcid.org/0000-0002-5181-9150</orcidid><orcidid>https://orcid.org/0000-0002-0151-7963</orcidid><orcidid>https://orcid.org/0000-0002-6661-5900</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-12, p.1-1
issn 2327-4662
language eng
recordid cdi_ieee_primary_10772571
source IEEE Electronic Library (IEL)
subjects Cloud computing
Clustering algorithms
Computational modeling
Delays
Edge computing
Energy consumption
Internet of Things
partial offloading
resource allocation
Resource management
Roads
Servers
Task dependency
vehicle clusters
vehicular edge computing
title De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-Duplicated%20Hierarchical%20Offloading%20in%20Vehicular%20Edge%20Computing%20With%20Task%20Dependencies&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liao,%20Zhuofan&rft.date=2024-12-02&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3510370&rft_dat=%3Cieee_RIE%3E10772571%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10772571&rfr_iscdi=true