De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies
In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-12, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | |
creator | Liao, Zhuofan Shao, Zhenyi Zheng, Bin Tang, XiaoYong |
description | In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption. |
doi_str_mv | 10.1109/JIOT.2024.3510370 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10772571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10772571</ieee_id><sourcerecordid>10772571</sourcerecordid><originalsourceid>FETCH-ieee_primary_107725713</originalsourceid><addsrcrecordid>eNqFir0OgjAURhsTE4n6ACYOfQHwtvw0zIJBFxeibqaBC1QLkhYG315M3J2-nHM-QjYMPMYg3p2O59zjwAPPDxn4AmbE4T4XbhBFfEHW1j4AYLqGLI4cckvQTcZeq0IOWNJMoZGmaCbU9FxV-iVL1dVUdfSCkx21NDQta6T7V9uPw7dd1dDQXNonTbDHrsSuUGhXZF5JbXH92yXZHtJ8n7kKEe-9Ua007zsDIXgomP8nfwAWBEFI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhuofan ; Shao, Zhenyi ; Zheng, Bin ; Tang, XiaoYong</creator><creatorcontrib>Liao, Zhuofan ; Shao, Zhenyi ; Zheng, Bin ; Tang, XiaoYong</creatorcontrib><description>In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.</description><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3510370</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Clustering algorithms ; Computational modeling ; Delays ; Edge computing ; Energy consumption ; Internet of Things ; partial offloading ; resource allocation ; Resource management ; Roads ; Servers ; Task dependency ; vehicle clusters ; vehicular edge computing</subject><ispartof>IEEE internet of things journal, 2024-12, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5181-9150 ; 0000-0002-0151-7963 ; 0000-0002-6661-5900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10772571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10772571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhuofan</creatorcontrib><creatorcontrib>Shao, Zhenyi</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Tang, XiaoYong</creatorcontrib><title>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.</description><subject>Cloud computing</subject><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Internet of Things</subject><subject>partial offloading</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Roads</subject><subject>Servers</subject><subject>Task dependency</subject><subject>vehicle clusters</subject><subject>vehicular edge computing</subject><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFir0OgjAURhsTE4n6ACYOfQHwtvw0zIJBFxeibqaBC1QLkhYG315M3J2-nHM-QjYMPMYg3p2O59zjwAPPDxn4AmbE4T4XbhBFfEHW1j4AYLqGLI4cckvQTcZeq0IOWNJMoZGmaCbU9FxV-iVL1dVUdfSCkx21NDQta6T7V9uPw7dd1dDQXNonTbDHrsSuUGhXZF5JbXH92yXZHtJ8n7kKEe-9Ua007zsDIXgomP8nfwAWBEFI</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Liao, Zhuofan</creator><creator>Shao, Zhenyi</creator><creator>Zheng, Bin</creator><creator>Tang, XiaoYong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-5181-9150</orcidid><orcidid>https://orcid.org/0000-0002-0151-7963</orcidid><orcidid>https://orcid.org/0000-0002-6661-5900</orcidid></search><sort><creationdate>20241202</creationdate><title>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</title><author>Liao, Zhuofan ; Shao, Zhenyi ; Zheng, Bin ; Tang, XiaoYong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107725713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Internet of Things</topic><topic>partial offloading</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Roads</topic><topic>Servers</topic><topic>Task dependency</topic><topic>vehicle clusters</topic><topic>vehicular edge computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhuofan</creatorcontrib><creatorcontrib>Shao, Zhenyi</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Tang, XiaoYong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhuofan</au><au>Shao, Zhenyi</au><au>Zheng, Bin</au><au>Tang, XiaoYong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-12-02</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In Vehicular Edge Computing (VEC), most tasks require high real-time and energy requirements, but the mobility of vehicles and the difficulty of intelligent computing make it hard to meet these requirements. Due to the fact that most VEC tasks can be decomposed into smaller granularity, based on the dependencies between small subtasks, the repetition of tasks can be reduced, thereby improving task completion rates. In this work, we explore the dependencies of subtasks in different applications and design a two-stage Multi-hop Clustering De-duplication Offloading (MCDO) mechanism. Firstly, MCDO gives a Multi-hop Two Layer Clustering (MTLC) algorithm to divide clusters based on similarities between different tasks. Based on this, MCDO further design a De-duplication Logical Hierarchical Offloading (DLHO). DLHO forms a Directed Acyclic Graph (DAG) of de-duplicated subtasks in each cluster, and offloads these subtasks in a logical hierarchical manner. Simulation results show that, compared to existing approaches PC5-GO, FedEdge and MD-TSDQN, MCDO can achieve a minimum improvement of 15.1% in terms of latency and 20.8% in terms of energy consumption.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3510370</doi><orcidid>https://orcid.org/0000-0002-5181-9150</orcidid><orcidid>https://orcid.org/0000-0002-0151-7963</orcidid><orcidid>https://orcid.org/0000-0002-6661-5900</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-12, p.1-1 |
issn | 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10772571 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing Clustering algorithms Computational modeling Delays Edge computing Energy consumption Internet of Things partial offloading resource allocation Resource management Roads Servers Task dependency vehicle clusters vehicular edge computing |
title | De-Duplicated Hierarchical Offloading in Vehicular Edge Computing With Task Dependencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-Duplicated%20Hierarchical%20Offloading%20in%20Vehicular%20Edge%20Computing%20With%20Task%20Dependencies&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liao,%20Zhuofan&rft.date=2024-12-02&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3510370&rft_dat=%3Cieee_RIE%3E10772571%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10772571&rfr_iscdi=true |