Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds
Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-11, p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | |
creator | Ma, Yanbiao Jiao, Licheng Liu, Fang Li, Lingling Ma, Wenping Yang, Shuyuan Liu, Xu Chen, Puhua |
description | Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance. |
doi_str_mv | 10.1109/TPAMI.2024.3510048 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10772274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10772274</ieee_id><sourcerecordid>10772274</sourcerecordid><originalsourceid>FETCH-ieee_primary_107722743</originalsourceid><addsrcrecordid>eNqFirFuwjAURT1QCVr4gYrh_QDh2QlNGNumpRkSMcCMLPISHjIOsh0k-vWlFXunc4_uEeJZYiQlLueb9WtZRApVEsULiZhkAzFC-aJmWaayoXj0_ogokwXGI2G29kJs2LagbQ0lB251-NUVWXLa8DfV8Mbak4eugbyqPISD6_r2cCNBYYNj63kPOZ_oNjr7F67J7ekcem2g1JabztR-LB4abTxN7nwS08-PzfvXjIlod3Z80u66k5imSqVJ_M_9A_ptSNM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Yanbiao ; Jiao, Licheng ; Liu, Fang ; Li, Lingling ; Ma, Wenping ; Yang, Shuyuan ; Liu, Xu ; Chen, Puhua</creator><creatorcontrib>Ma, Yanbiao ; Jiao, Licheng ; Liu, Fang ; Li, Lingling ; Ma, Wenping ; Yang, Shuyuan ; Liu, Xu ; Chen, Puhua</creatorcontrib><description>Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.</description><identifier>ISSN: 0162-8828</identifier><identifier>DOI: 10.1109/TPAMI.2024.3510048</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Computational modeling ; Correlation ; Data models ; Manifolds ; Maximum likelihood estimation ; Optimization ; Predictive models ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-11, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6130-2518 ; 0000-0002-4796-5737 ; 0000-0002-8472-1475 ; 0000-0001-5472-1426 ; 0000-0001-8872-2195 ; 0000-0002-8780-5455 ; 0000-0003-3354-9617 ; 0000-0002-5669-9354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10772274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10772274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Yanbiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Ma, Wenping</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Chen, Puhua</creatorcontrib><title>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Data models</subject><subject>Manifolds</subject><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Training</subject><issn>0162-8828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFirFuwjAURT1QCVr4gYrh_QDh2QlNGNumpRkSMcCMLPISHjIOsh0k-vWlFXunc4_uEeJZYiQlLueb9WtZRApVEsULiZhkAzFC-aJmWaayoXj0_ogokwXGI2G29kJs2LagbQ0lB251-NUVWXLa8DfV8Mbak4eugbyqPISD6_r2cCNBYYNj63kPOZ_oNjr7F67J7ekcem2g1JabztR-LB4abTxN7nwS08-PzfvXjIlod3Z80u66k5imSqVJ_M_9A_ptSNM</recordid><startdate>20241130</startdate><enddate>20241130</enddate><creator>Ma, Yanbiao</creator><creator>Jiao, Licheng</creator><creator>Liu, Fang</creator><creator>Li, Lingling</creator><creator>Ma, Wenping</creator><creator>Yang, Shuyuan</creator><creator>Liu, Xu</creator><creator>Chen, Puhua</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-8472-1475</orcidid><orcidid>https://orcid.org/0000-0001-5472-1426</orcidid><orcidid>https://orcid.org/0000-0001-8872-2195</orcidid><orcidid>https://orcid.org/0000-0002-8780-5455</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid></search><sort><creationdate>20241130</creationdate><title>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</title><author>Ma, Yanbiao ; Jiao, Licheng ; Liu, Fang ; Li, Lingling ; Ma, Wenping ; Yang, Shuyuan ; Liu, Xu ; Chen, Puhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107722743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Data models</topic><topic>Manifolds</topic><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yanbiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Ma, Wenping</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Chen, Puhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yanbiao</au><au>Jiao, Licheng</au><au>Liu, Fang</au><au>Li, Lingling</au><au>Ma, Wenping</au><au>Yang, Shuyuan</au><au>Liu, Xu</au><au>Chen, Puhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2024-11-30</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0162-8828</issn><coden>ITPIDJ</coden><abstract>Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.</abstract><pub>IEEE</pub><doi>10.1109/TPAMI.2024.3510048</doi><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-8472-1475</orcidid><orcidid>https://orcid.org/0000-0001-5472-1426</orcidid><orcidid>https://orcid.org/0000-0001-8872-2195</orcidid><orcidid>https://orcid.org/0000-0002-8780-5455</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-11, p.1-8 |
issn | 0162-8828 |
language | eng |
recordid | cdi_ieee_primary_10772274 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Benchmark testing Computational modeling Correlation Data models Manifolds Maximum likelihood estimation Optimization Predictive models Training |
title | Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20and%20Mitigating%20Generalized%20Biases%20of%20DNNs%20through%20the%20Intrinsic%20Dimensions%20of%20Perceptual%20Manifolds&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Ma,%20Yanbiao&rft.date=2024-11-30&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0162-8828&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3510048&rft_dat=%3Cieee_RIE%3E10772274%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10772274&rfr_iscdi=true |