Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds

Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-11, p.1-8
Hauptverfasser: Ma, Yanbiao, Jiao, Licheng, Liu, Fang, Li, Lingling, Ma, Wenping, Yang, Shuyuan, Liu, Xu, Chen, Puhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume
creator Ma, Yanbiao
Jiao, Licheng
Liu, Fang
Li, Lingling
Ma, Wenping
Yang, Shuyuan
Liu, Xu
Chen, Puhua
description Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.
doi_str_mv 10.1109/TPAMI.2024.3510048
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10772274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10772274</ieee_id><sourcerecordid>10772274</sourcerecordid><originalsourceid>FETCH-ieee_primary_107722743</originalsourceid><addsrcrecordid>eNqFirFuwjAURT1QCVr4gYrh_QDh2QlNGNumpRkSMcCMLPISHjIOsh0k-vWlFXunc4_uEeJZYiQlLueb9WtZRApVEsULiZhkAzFC-aJmWaayoXj0_ogokwXGI2G29kJs2LagbQ0lB251-NUVWXLa8DfV8Mbak4eugbyqPISD6_r2cCNBYYNj63kPOZ_oNjr7F67J7ekcem2g1JabztR-LB4abTxN7nwS08-PzfvXjIlod3Z80u66k5imSqVJ_M_9A_ptSNM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Yanbiao ; Jiao, Licheng ; Liu, Fang ; Li, Lingling ; Ma, Wenping ; Yang, Shuyuan ; Liu, Xu ; Chen, Puhua</creator><creatorcontrib>Ma, Yanbiao ; Jiao, Licheng ; Liu, Fang ; Li, Lingling ; Ma, Wenping ; Yang, Shuyuan ; Liu, Xu ; Chen, Puhua</creatorcontrib><description>Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.</description><identifier>ISSN: 0162-8828</identifier><identifier>DOI: 10.1109/TPAMI.2024.3510048</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Computational modeling ; Correlation ; Data models ; Manifolds ; Maximum likelihood estimation ; Optimization ; Predictive models ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-11, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6130-2518 ; 0000-0002-4796-5737 ; 0000-0002-8472-1475 ; 0000-0001-5472-1426 ; 0000-0001-8872-2195 ; 0000-0002-8780-5455 ; 0000-0003-3354-9617 ; 0000-0002-5669-9354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10772274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10772274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Yanbiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Ma, Wenping</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Chen, Puhua</creatorcontrib><title>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Data models</subject><subject>Manifolds</subject><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Training</subject><issn>0162-8828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFirFuwjAURT1QCVr4gYrh_QDh2QlNGNumpRkSMcCMLPISHjIOsh0k-vWlFXunc4_uEeJZYiQlLueb9WtZRApVEsULiZhkAzFC-aJmWaayoXj0_ogokwXGI2G29kJs2LagbQ0lB251-NUVWXLa8DfV8Mbak4eugbyqPISD6_r2cCNBYYNj63kPOZ_oNjr7F67J7ekcem2g1JabztR-LB4abTxN7nwS08-PzfvXjIlod3Z80u66k5imSqVJ_M_9A_ptSNM</recordid><startdate>20241130</startdate><enddate>20241130</enddate><creator>Ma, Yanbiao</creator><creator>Jiao, Licheng</creator><creator>Liu, Fang</creator><creator>Li, Lingling</creator><creator>Ma, Wenping</creator><creator>Yang, Shuyuan</creator><creator>Liu, Xu</creator><creator>Chen, Puhua</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-8472-1475</orcidid><orcidid>https://orcid.org/0000-0001-5472-1426</orcidid><orcidid>https://orcid.org/0000-0001-8872-2195</orcidid><orcidid>https://orcid.org/0000-0002-8780-5455</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid></search><sort><creationdate>20241130</creationdate><title>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</title><author>Ma, Yanbiao ; Jiao, Licheng ; Liu, Fang ; Li, Lingling ; Ma, Wenping ; Yang, Shuyuan ; Liu, Xu ; Chen, Puhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107722743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Data models</topic><topic>Manifolds</topic><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yanbiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Ma, Wenping</creatorcontrib><creatorcontrib>Yang, Shuyuan</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Chen, Puhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yanbiao</au><au>Jiao, Licheng</au><au>Liu, Fang</au><au>Li, Lingling</au><au>Ma, Wenping</au><au>Yang, Shuyuan</au><au>Liu, Xu</au><au>Chen, Puhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2024-11-30</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0162-8828</issn><coden>ITPIDJ</coden><abstract>Building fair deep neural networks (DNNs) is a crucial step towards achieving trustworthy artificial intelligence. Delving into deeper factors that affect the fairness of DNNs is paramount and serves as the foundation for mitigating model biases. However, current methods are limited in accurately predicting DNN biases, relying solely on the number of training samples and lacking more precise measurement tools. Here, we establish a geometric perspective for analyzing the fairness of DNNs, comprehensively exploring how DNNs internally shape the intrinsic geometric characteristics of datasets-the intrinsic dimensions (IDs) of perceptual manifolds, and the impact of IDs on the fairness of DNNs. Based on multiple findings, we propose Intrinsic Dimension Regularization (IDR), which enhances the fairness and performance of models by promoting the learning of concise and ID-balanced class perceptual manifolds. In various image recognition benchmark tests, IDR significantly mitigates model bias while improving its performance.</abstract><pub>IEEE</pub><doi>10.1109/TPAMI.2024.3510048</doi><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0002-4796-5737</orcidid><orcidid>https://orcid.org/0000-0002-8472-1475</orcidid><orcidid>https://orcid.org/0000-0001-5472-1426</orcidid><orcidid>https://orcid.org/0000-0001-8872-2195</orcidid><orcidid>https://orcid.org/0000-0002-8780-5455</orcidid><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0002-5669-9354</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-11, p.1-8
issn 0162-8828
language eng
recordid cdi_ieee_primary_10772274
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Benchmark testing
Computational modeling
Correlation
Data models
Manifolds
Maximum likelihood estimation
Optimization
Predictive models
Training
title Unveiling and Mitigating Generalized Biases of DNNs through the Intrinsic Dimensions of Perceptual Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20and%20Mitigating%20Generalized%20Biases%20of%20DNNs%20through%20the%20Intrinsic%20Dimensions%20of%20Perceptual%20Manifolds&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Ma,%20Yanbiao&rft.date=2024-11-30&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0162-8828&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3510048&rft_dat=%3Cieee_RIE%3E10772274%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10772274&rfr_iscdi=true