A Land-Based Controlled-Source Single-Component Electromagnetic Exploration Method With Finite Scalar Reference Stations

Traditional scalar controlled-source audio-frequency magnetotellurics (CSAMTs) typically calculate Cagniard apparent resistivity based on the amplitude ratio of the horizontal electric field component parallel to the source ( E_{x} ) to the horizontal magnetic field component perpendicular to the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2025, Vol.63, p.1-12
Hauptverfasser: Zhang, Heng, Yang, Yang, Huang, Min, Zhao, Dongdong, Zhu, Yuzhen, Zhang, Wenyan, Peng, Yonghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 63
creator Zhang, Heng
Yang, Yang
Huang, Min
Zhao, Dongdong
Zhu, Yuzhen
Zhang, Wenyan
Peng, Yonghui
description Traditional scalar controlled-source audio-frequency magnetotellurics (CSAMTs) typically calculate Cagniard apparent resistivity based on the amplitude ratio of the horizontal electric field component parallel to the source ( E_{x} ) to the horizontal magnetic field component perpendicular to the source ( H_{y} ). However, when conducting surveys in areas with magnetic metal installations and dense electromagnetic noise, the H_{y} component is more prone to severe data distortion compared to the E_{x} component. In the far-field of a horizontal electric dipole in a uniform medium model, E_{x} is also more sensitive to underground medium resistivity than H_{y} . Recording only E_{x} can enhance the interference resistance and exploration efficiency of the observation system. However, despite the more concise definition of E_{x} apparent resistivity compared to Cagniard apparent resistivity, its susceptibility to source effects is pronounced. Therefore, we have developed a land-based single-component electromagnetic exploration method with finite scalar reference stations. We simulated source effects using several 2-D models and analyzed their impact on E_{x} and Cagniard apparent resistivity. To mitigate source effects associated with using only the Ex component for exploration, we strategically placed a finite number of discrete scalar reference stations to simultaneously measure E_{x} and H_{y} . An improved far-field formula for E_{x} apparent resistivity was derived based on reference observations. Scalar reference stations were positioned in interference-weak areas to ensure data reliability, especi
doi_str_mv 10.1109/TGRS.2024.3509957
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10772264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10772264</ieee_id><sourcerecordid>10_1109_TGRS_2024_3509957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-36fd5bc29a7b3e60e65e848819b9b897ec6992824b55002e1dcb5cbc6308c4d63</originalsourceid><addsrcrecordid>eNpNkEFPwjAYhhujiYj-ABMP_QPDtmu79ogE0ARjAiQel677BjWjJV1N8N-7CQdP7-V53sOD0CMlE0qJft4u15sJI4xPckG0FsUVGlEhVEYk59doRKiWGVOa3aK7rvsihHJBixE6TfHK-Dp7MR3UeBZ8iqFtoc424TtawBvndy1ks3A4Bg8-4XkLtmcOZuchOYvnp2MbokkuePwOaR9q_OnSHi-cd6n3rWlNxGtoIIIfDtMf292jm8a0HTxcdoy2i_l29pqtPpZvs-kqszLnWS6bWlSWaVNUOUgCUoDiSlFd6UrpAqzUminGKyEIYUBrWwlb9S5RltcyHyN6vrUxdF2EpjxGdzDxp6SkHMqVQ7lyKFdeyvXO09lxAPCPLwrGJM9_AXKKbD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Land-Based Controlled-Source Single-Component Electromagnetic Exploration Method With Finite Scalar Reference Stations</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Heng ; Yang, Yang ; Huang, Min ; Zhao, Dongdong ; Zhu, Yuzhen ; Zhang, Wenyan ; Peng, Yonghui</creator><creatorcontrib>Zhang, Heng ; Yang, Yang ; Huang, Min ; Zhao, Dongdong ; Zhu, Yuzhen ; Zhang, Wenyan ; Peng, Yonghui</creatorcontrib><description><![CDATA[Traditional scalar controlled-source audio-frequency magnetotellurics (CSAMTs) typically calculate Cagniard apparent resistivity based on the amplitude ratio of the horizontal electric field component parallel to the source (<inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula>) to the horizontal magnetic field component perpendicular to the source (<inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>). However, when conducting surveys in areas with magnetic metal installations and dense electromagnetic noise, the <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula> component is more prone to severe data distortion compared to the <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> component. In the far-field of a horizontal electric dipole in a uniform medium model, <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> is also more sensitive to underground medium resistivity than <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. Recording only <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> can enhance the interference resistance and exploration efficiency of the observation system. However, despite the more concise definition of <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> apparent resistivity compared to Cagniard apparent resistivity, its susceptibility to source effects is pronounced. Therefore, we have developed a land-based single-component electromagnetic exploration method with finite scalar reference stations. We simulated source effects using several 2-D models and analyzed their impact on <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> and Cagniard apparent resistivity. To mitigate source effects associated with using only the Ex component for exploration, we strategically placed a finite number of discrete scalar reference stations to simultaneously measure <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. An improved far-field formula for <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> apparent resistivity was derived based on reference observations. Scalar reference stations were positioned in interference-weak areas to ensure data reliability, especially for <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. Through 3-D model simulations and a field case study in Shandong Province, China, the practicality and advantages of the proposed exploration technology were demonstrated.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3509957</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apparent resistivity ; Conductivity ; controlled-source electromagnetic (CSEM) ; Electric fields ; Geologic measurements ; Interference ; Magnetic field measurement ; Magnetic fields ; Metals ; Noise ; observation mode ; Receivers ; source effects ; Surveys</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2025, Vol.63, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c634-36fd5bc29a7b3e60e65e848819b9b897ec6992824b55002e1dcb5cbc6308c4d63</cites><orcidid>0000-0001-8609-8667 ; 0000-0003-0943-000X ; 0009-0007-8594-2636 ; 0000-0001-7988-0239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10772264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10772264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Zhao, Dongdong</creatorcontrib><creatorcontrib>Zhu, Yuzhen</creatorcontrib><creatorcontrib>Zhang, Wenyan</creatorcontrib><creatorcontrib>Peng, Yonghui</creatorcontrib><title>A Land-Based Controlled-Source Single-Component Electromagnetic Exploration Method With Finite Scalar Reference Stations</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Traditional scalar controlled-source audio-frequency magnetotellurics (CSAMTs) typically calculate Cagniard apparent resistivity based on the amplitude ratio of the horizontal electric field component parallel to the source (<inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula>) to the horizontal magnetic field component perpendicular to the source (<inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>). However, when conducting surveys in areas with magnetic metal installations and dense electromagnetic noise, the <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula> component is more prone to severe data distortion compared to the <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> component. In the far-field of a horizontal electric dipole in a uniform medium model, <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> is also more sensitive to underground medium resistivity than <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. Recording only <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> can enhance the interference resistance and exploration efficiency of the observation system. However, despite the more concise definition of <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> apparent resistivity compared to Cagniard apparent resistivity, its susceptibility to source effects is pronounced. Therefore, we have developed a land-based single-component electromagnetic exploration method with finite scalar reference stations. We simulated source effects using several 2-D models and analyzed their impact on <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> and Cagniard apparent resistivity. To mitigate source effects associated with using only the Ex component for exploration, we strategically placed a finite number of discrete scalar reference stations to simultaneously measure <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. An improved far-field formula for <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> apparent resistivity was derived based on reference observations. Scalar reference stations were positioned in interference-weak areas to ensure data reliability, especially for <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. Through 3-D model simulations and a field case study in Shandong Province, China, the practicality and advantages of the proposed exploration technology were demonstrated.]]></description><subject>Apparent resistivity</subject><subject>Conductivity</subject><subject>controlled-source electromagnetic (CSEM)</subject><subject>Electric fields</subject><subject>Geologic measurements</subject><subject>Interference</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Metals</subject><subject>Noise</subject><subject>observation mode</subject><subject>Receivers</subject><subject>source effects</subject><subject>Surveys</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwjAYhhujiYj-ABMP_QPDtmu79ogE0ARjAiQel677BjWjJV1N8N-7CQdP7-V53sOD0CMlE0qJft4u15sJI4xPckG0FsUVGlEhVEYk59doRKiWGVOa3aK7rvsihHJBixE6TfHK-Dp7MR3UeBZ8iqFtoc424TtawBvndy1ks3A4Bg8-4XkLtmcOZuchOYvnp2MbokkuePwOaR9q_OnSHi-cd6n3rWlNxGtoIIIfDtMf292jm8a0HTxcdoy2i_l29pqtPpZvs-kqszLnWS6bWlSWaVNUOUgCUoDiSlFd6UrpAqzUminGKyEIYUBrWwlb9S5RltcyHyN6vrUxdF2EpjxGdzDxp6SkHMqVQ7lyKFdeyvXO09lxAPCPLwrGJM9_AXKKbD0</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Heng</creator><creator>Yang, Yang</creator><creator>Huang, Min</creator><creator>Zhao, Dongdong</creator><creator>Zhu, Yuzhen</creator><creator>Zhang, Wenyan</creator><creator>Peng, Yonghui</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8609-8667</orcidid><orcidid>https://orcid.org/0000-0003-0943-000X</orcidid><orcidid>https://orcid.org/0009-0007-8594-2636</orcidid><orcidid>https://orcid.org/0000-0001-7988-0239</orcidid></search><sort><creationdate>2025</creationdate><title>A Land-Based Controlled-Source Single-Component Electromagnetic Exploration Method With Finite Scalar Reference Stations</title><author>Zhang, Heng ; Yang, Yang ; Huang, Min ; Zhao, Dongdong ; Zhu, Yuzhen ; Zhang, Wenyan ; Peng, Yonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-36fd5bc29a7b3e60e65e848819b9b897ec6992824b55002e1dcb5cbc6308c4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Apparent resistivity</topic><topic>Conductivity</topic><topic>controlled-source electromagnetic (CSEM)</topic><topic>Electric fields</topic><topic>Geologic measurements</topic><topic>Interference</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Metals</topic><topic>Noise</topic><topic>observation mode</topic><topic>Receivers</topic><topic>source effects</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Zhao, Dongdong</creatorcontrib><creatorcontrib>Zhu, Yuzhen</creatorcontrib><creatorcontrib>Zhang, Wenyan</creatorcontrib><creatorcontrib>Peng, Yonghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Heng</au><au>Yang, Yang</au><au>Huang, Min</au><au>Zhao, Dongdong</au><au>Zhu, Yuzhen</au><au>Zhang, Wenyan</au><au>Peng, Yonghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Land-Based Controlled-Source Single-Component Electromagnetic Exploration Method With Finite Scalar Reference Stations</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2025</date><risdate>2025</risdate><volume>63</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Traditional scalar controlled-source audio-frequency magnetotellurics (CSAMTs) typically calculate Cagniard apparent resistivity based on the amplitude ratio of the horizontal electric field component parallel to the source (<inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula>) to the horizontal magnetic field component perpendicular to the source (<inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>). However, when conducting surveys in areas with magnetic metal installations and dense electromagnetic noise, the <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula> component is more prone to severe data distortion compared to the <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> component. In the far-field of a horizontal electric dipole in a uniform medium model, <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> is also more sensitive to underground medium resistivity than <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. Recording only <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> can enhance the interference resistance and exploration efficiency of the observation system. However, despite the more concise definition of <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> apparent resistivity compared to Cagniard apparent resistivity, its susceptibility to source effects is pronounced. Therefore, we have developed a land-based single-component electromagnetic exploration method with finite scalar reference stations. We simulated source effects using several 2-D models and analyzed their impact on <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> and Cagniard apparent resistivity. To mitigate source effects associated with using only the Ex component for exploration, we strategically placed a finite number of discrete scalar reference stations to simultaneously measure <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. An improved far-field formula for <inline-formula> <tex-math notation="LaTeX">E_{x} </tex-math></inline-formula> apparent resistivity was derived based on reference observations. Scalar reference stations were positioned in interference-weak areas to ensure data reliability, especially for <inline-formula> <tex-math notation="LaTeX">H_{y} </tex-math></inline-formula>. Through 3-D model simulations and a field case study in Shandong Province, China, the practicality and advantages of the proposed exploration technology were demonstrated.]]></abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3509957</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8609-8667</orcidid><orcidid>https://orcid.org/0000-0003-0943-000X</orcidid><orcidid>https://orcid.org/0009-0007-8594-2636</orcidid><orcidid>https://orcid.org/0000-0001-7988-0239</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2025, Vol.63, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10772264
source IEEE Electronic Library (IEL)
subjects Apparent resistivity
Conductivity
controlled-source electromagnetic (CSEM)
Electric fields
Geologic measurements
Interference
Magnetic field measurement
Magnetic fields
Metals
Noise
observation mode
Receivers
source effects
Surveys
title A Land-Based Controlled-Source Single-Component Electromagnetic Exploration Method With Finite Scalar Reference Stations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Land-Based%20Controlled-Source%20Single-Component%20Electromagnetic%20Exploration%20Method%20With%20Finite%20Scalar%20Reference%20Stations&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Heng&rft.date=2025&rft.volume=63&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3509957&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3509957%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10772264&rfr_iscdi=true