Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis

Compressive Robust Principal Component Analysis (CRPCA) naturally arises in various applications as a means to recover a low-rank matrix low-rank matrix L and a sparse matrix S from compressive measurements. In this paper, we approach the problem from a Bayesian inference perspective. We establish a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-11, p.1-1
Hauptverfasser: He, Zhuohang, Ma, Junjie, Yuan, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on information theory
container_volume
creator He, Zhuohang
Ma, Junjie
Yuan, Xiaojun
description Compressive Robust Principal Component Analysis (CRPCA) naturally arises in various applications as a means to recover a low-rank matrix low-rank matrix L and a sparse matrix S from compressive measurements. In this paper, we approach the problem from a Bayesian inference perspective. We establish a probabilistic model for the problem and develop an improved turbo message passing (ITMP) algorithm based on the sum-product rule and the appropriate approximations. Additionally, we establish a state evolution framework to characterize the asymptotic behavior of the ITMP algorithm in the large-system limit. By analyzing the established state evolution, we further propose sufficient conditions for the global convergence of our algorithm. Our numerical results validate the theoretical results, demonstrating that the proposed asymptotic framework accurately characterize the dynamical behavior of the ITMP algorithm, and the phase transition curve specified by the sufficient condition agrees well with numerical simulations.
doi_str_mv 10.1109/TIT.2024.3509476
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10772159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10772159</ieee_id><sourcerecordid>10772159</sourcerecordid><originalsourceid>FETCH-ieee_primary_107721593</originalsourceid><addsrcrecordid>eNqFisFqwkAURWehUKvuu3DxfsB0Jk4a012wii4Ekexl1Gf6SjIT5o1CoB_fINKtq8u55wjxpmSklMzei00RxTLW0SyRmU4_emIgpZpPM63nL-KV-adDnah4IH43dePdDc9QXP3RwRaZTYmwM8xkS7g4DwvXNd1PN4S9O145wM6TPVFjqrt0Fm2A3JqqZeJPyKvSeQrfNXwhU2nB2DPk3NZNcIFO_-VI9C-mYhw_digmq2WxWE8JEQ-Np9r49qBkmsYqyWZP9B_8KU7S</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>He, Zhuohang ; Ma, Junjie ; Yuan, Xiaojun</creator><creatorcontrib>He, Zhuohang ; Ma, Junjie ; Yuan, Xiaojun</creatorcontrib><description>Compressive Robust Principal Component Analysis (CRPCA) naturally arises in various applications as a means to recover a low-rank matrix low-rank matrix L and a sparse matrix S from compressive measurements. In this paper, we approach the problem from a Bayesian inference perspective. We establish a probabilistic model for the problem and develop an improved turbo message passing (ITMP) algorithm based on the sum-product rule and the appropriate approximations. Additionally, we establish a state evolution framework to characterize the asymptotic behavior of the ITMP algorithm in the large-system limit. By analyzing the established state evolution, we further propose sufficient conditions for the global convergence of our algorithm. Our numerical results validate the theoretical results, demonstrating that the proposed asymptotic framework accurately characterize the dynamical behavior of the ITMP algorithm, and the phase transition curve specified by the sufficient condition agrees well with numerical simulations.</description><identifier>ISSN: 0018-9448</identifier><identifier>DOI: 10.1109/TIT.2024.3509476</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>approximate message passing ; Approximation algorithms ; Bayes methods ; compressed sensing ; Convergence ; Face recognition ; Heuristic algorithms ; Inference algorithms ; low-rank matrix denoising ; Message passing ; Noise measurement ; phase transition ; Principal component analysis ; random matrix theory ; Robust PCA ; singular value thresholding ; Sparse matrices ; state evolution</subject><ispartof>IEEE transactions on information theory, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0433-6535 ; 0000-0003-1263-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10772159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10772159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Zhuohang</creatorcontrib><creatorcontrib>Ma, Junjie</creatorcontrib><creatorcontrib>Yuan, Xiaojun</creatorcontrib><title>Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Compressive Robust Principal Component Analysis (CRPCA) naturally arises in various applications as a means to recover a low-rank matrix low-rank matrix L and a sparse matrix S from compressive measurements. In this paper, we approach the problem from a Bayesian inference perspective. We establish a probabilistic model for the problem and develop an improved turbo message passing (ITMP) algorithm based on the sum-product rule and the appropriate approximations. Additionally, we establish a state evolution framework to characterize the asymptotic behavior of the ITMP algorithm in the large-system limit. By analyzing the established state evolution, we further propose sufficient conditions for the global convergence of our algorithm. Our numerical results validate the theoretical results, demonstrating that the proposed asymptotic framework accurately characterize the dynamical behavior of the ITMP algorithm, and the phase transition curve specified by the sufficient condition agrees well with numerical simulations.</description><subject>approximate message passing</subject><subject>Approximation algorithms</subject><subject>Bayes methods</subject><subject>compressed sensing</subject><subject>Convergence</subject><subject>Face recognition</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>low-rank matrix denoising</subject><subject>Message passing</subject><subject>Noise measurement</subject><subject>phase transition</subject><subject>Principal component analysis</subject><subject>random matrix theory</subject><subject>Robust PCA</subject><subject>singular value thresholding</subject><subject>Sparse matrices</subject><subject>state evolution</subject><issn>0018-9448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFisFqwkAURWehUKvuu3DxfsB0Jk4a012wii4Ekexl1Gf6SjIT5o1CoB_fINKtq8u55wjxpmSklMzei00RxTLW0SyRmU4_emIgpZpPM63nL-KV-adDnah4IH43dePdDc9QXP3RwRaZTYmwM8xkS7g4DwvXNd1PN4S9O145wM6TPVFjqrt0Fm2A3JqqZeJPyKvSeQrfNXwhU2nB2DPk3NZNcIFO_-VI9C-mYhw_digmq2WxWE8JEQ-Np9r49qBkmsYqyWZP9B_8KU7S</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>He, Zhuohang</creator><creator>Ma, Junjie</creator><creator>Yuan, Xiaojun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-0433-6535</orcidid><orcidid>https://orcid.org/0000-0003-1263-5006</orcidid></search><sort><creationdate>20241129</creationdate><title>Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis</title><author>He, Zhuohang ; Ma, Junjie ; Yuan, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_107721593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>approximate message passing</topic><topic>Approximation algorithms</topic><topic>Bayes methods</topic><topic>compressed sensing</topic><topic>Convergence</topic><topic>Face recognition</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>low-rank matrix denoising</topic><topic>Message passing</topic><topic>Noise measurement</topic><topic>phase transition</topic><topic>Principal component analysis</topic><topic>random matrix theory</topic><topic>Robust PCA</topic><topic>singular value thresholding</topic><topic>Sparse matrices</topic><topic>state evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhuohang</creatorcontrib><creatorcontrib>Ma, Junjie</creatorcontrib><creatorcontrib>Yuan, Xiaojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Zhuohang</au><au>Ma, Junjie</au><au>Yuan, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-11-29</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><coden>IETTAW</coden><abstract>Compressive Robust Principal Component Analysis (CRPCA) naturally arises in various applications as a means to recover a low-rank matrix low-rank matrix L and a sparse matrix S from compressive measurements. In this paper, we approach the problem from a Bayesian inference perspective. We establish a probabilistic model for the problem and develop an improved turbo message passing (ITMP) algorithm based on the sum-product rule and the appropriate approximations. Additionally, we establish a state evolution framework to characterize the asymptotic behavior of the ITMP algorithm in the large-system limit. By analyzing the established state evolution, we further propose sufficient conditions for the global convergence of our algorithm. Our numerical results validate the theoretical results, demonstrating that the proposed asymptotic framework accurately characterize the dynamical behavior of the ITMP algorithm, and the phase transition curve specified by the sufficient condition agrees well with numerical simulations.</abstract><pub>IEEE</pub><doi>10.1109/TIT.2024.3509476</doi><orcidid>https://orcid.org/0000-0002-0433-6535</orcidid><orcidid>https://orcid.org/0000-0003-1263-5006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-11, p.1-1
issn 0018-9448
language eng
recordid cdi_ieee_primary_10772159
source IEEE Electronic Library (IEL)
subjects approximate message passing
Approximation algorithms
Bayes methods
compressed sensing
Convergence
Face recognition
Heuristic algorithms
Inference algorithms
low-rank matrix denoising
Message passing
Noise measurement
phase transition
Principal component analysis
random matrix theory
Robust PCA
singular value thresholding
Sparse matrices
state evolution
title Improved Turbo Message Passing for Compressive Robust Principal Component Analysis: Algorithm Design and Asymptotic Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Turbo%20Message%20Passing%20for%20Compressive%20Robust%20Principal%20Component%20Analysis:%20Algorithm%20Design%20and%20Asymptotic%20Analysis&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=He,%20Zhuohang&rft.date=2024-11-29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2024.3509476&rft_dat=%3Cieee_RIE%3E10772159%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10772159&rfr_iscdi=true