Supercritical Helium Flow Calorimetry at the MIT Superconducting Magnet Test Facility
This paper presents recent upgrades to the supercritical helium circuit at the MIT Superconducting Magnet Test Facility to support the characterization of REBCO-based cable magnets. In particular, we discuss the design, calibration and installation of dedicated mass flow meters for every conductor l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2025-08, Vol.35 (5), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 35 |
creator | Michael, Philip C. Golfinopoulos, Theodore Kaplan, Alexey Schweiger, Shane Garcia, Ivan Watterson, Amy Chamberlain, Sarah Nash, Daniel Craighill, Christopher Sanabria, Charlie Laamanen, Eric McCormack, Colin |
description | This paper presents recent upgrades to the supercritical helium circuit at the MIT Superconducting Magnet Test Facility to support the characterization of REBCO-based cable magnets. In particular, we discuss the design, calibration and installation of dedicated mass flow meters for every conductor layer in a multi-layer magnet. The design and manufacture of dedicated calibration heaters for each flow path is also described. When used in concert with inlet and outlet pressure and temperature sensors, these upgrades allow us to characterize the hydraulic response of each conductor layer. When deployed as a helium flow calorimeter, the configuration provides a cross-check of DC power dissipation in layer-to-layer conductor joints, facilitates the determination of AC loss heating during swept current and exponential current dump discharges, and permits a more accurate assessment of the energy dissipation within a magnet during quenching. Representative examples for each type of measurement are shown. |
doi_str_mv | 10.1109/TASC.2024.3508664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10771604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10771604</ieee_id><sourcerecordid>3146586306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-84e5812a8e0fee25e28e49f3ec6dfe97e9855f7f90712e1073f70c5aca8aa78c3</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EEqXwAEgMlphTfLczVhGlSK0Yms6W5R6XVGlSHEeob0-qdGA6Z_j-c_kQeqZkRinJ38r5ppgxwsSMS2KUEjdoQqU0GZNU3g49kTQzjPF79NB1B0KoMEJO0HbTnyD6WKXKuxovoa76I17U7S8uXN3G6ggpnrFLOH0DXn-WeAy0za73qWr2eO32DSRcQpfwwvmqrtL5Ed0FV3fwdK1TtF28l8UyW319fBbzVeapVikzAqShzBkgAYBJYAZEHjh4tQuQa8iNlEGHnGjKgBLNgyZeOu-Mc9p4PkWv49xTbH_64QJ7aPvYDCstp0JJozhRA0VHyse26yIEexr-cvFsKbEXe_Ziz17s2au9IfMyZioA-MdrTRUR_A8k8GvF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586306</pqid></control><display><type>article</type><title>Supercritical Helium Flow Calorimetry at the MIT Superconducting Magnet Test Facility</title><source>IEEE Electronic Library (IEL)</source><creator>Michael, Philip C. ; Golfinopoulos, Theodore ; Kaplan, Alexey ; Schweiger, Shane ; Garcia, Ivan ; Watterson, Amy ; Chamberlain, Sarah ; Nash, Daniel ; Craighill, Christopher ; Sanabria, Charlie ; Laamanen, Eric ; McCormack, Colin</creator><creatorcontrib>Michael, Philip C. ; Golfinopoulos, Theodore ; Kaplan, Alexey ; Schweiger, Shane ; Garcia, Ivan ; Watterson, Amy ; Chamberlain, Sarah ; Nash, Daniel ; Craighill, Christopher ; Sanabria, Charlie ; Laamanen, Eric ; McCormack, Colin</creatorcontrib><description>This paper presents recent upgrades to the supercritical helium circuit at the MIT Superconducting Magnet Test Facility to support the characterization of REBCO-based cable magnets. In particular, we discuss the design, calibration and installation of dedicated mass flow meters for every conductor layer in a multi-layer magnet. The design and manufacture of dedicated calibration heaters for each flow path is also described. When used in concert with inlet and outlet pressure and temperature sensors, these upgrades allow us to characterize the hydraulic response of each conductor layer. When deployed as a helium flow calorimeter, the configuration provides a cross-check of DC power dissipation in layer-to-layer conductor joints, facilitates the determination of AC loss heating during swept current and exponential current dump discharges, and permits a more accurate assessment of the energy dissipation within a magnet during quenching. Representative examples for each type of measurement are shown.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3508664</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating current ; Calibration ; Calorimetry ; Coils ; Conductors ; Cryogenics ; Energy dissipation ; Heating systems ; Helium ; helium flow calorimetry ; Magnets ; Mass flowmeters ; Multilayers ; Orifices ; super- conducting magnet test facility ; Superconducting magnets ; Superconductivity ; Temperature measurement ; Temperature sensors ; Test facilities ; Toroidal magnetic fields</subject><ispartof>IEEE transactions on applied superconductivity, 2025-08, Vol.35 (5), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-84e5812a8e0fee25e28e49f3ec6dfe97e9855f7f90712e1073f70c5aca8aa78c3</cites><orcidid>0000-0001-5017-5309 ; 0009-0004-9149-4786 ; 0009-0004-9576-1087 ; 0000-0002-0898-5217 ; 0009-0008-4412-2612 ; 0000-0002-7857-3701 ; 0000-0003-4906-6169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10771604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10771604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Michael, Philip C.</creatorcontrib><creatorcontrib>Golfinopoulos, Theodore</creatorcontrib><creatorcontrib>Kaplan, Alexey</creatorcontrib><creatorcontrib>Schweiger, Shane</creatorcontrib><creatorcontrib>Garcia, Ivan</creatorcontrib><creatorcontrib>Watterson, Amy</creatorcontrib><creatorcontrib>Chamberlain, Sarah</creatorcontrib><creatorcontrib>Nash, Daniel</creatorcontrib><creatorcontrib>Craighill, Christopher</creatorcontrib><creatorcontrib>Sanabria, Charlie</creatorcontrib><creatorcontrib>Laamanen, Eric</creatorcontrib><creatorcontrib>McCormack, Colin</creatorcontrib><title>Supercritical Helium Flow Calorimetry at the MIT Superconducting Magnet Test Facility</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This paper presents recent upgrades to the supercritical helium circuit at the MIT Superconducting Magnet Test Facility to support the characterization of REBCO-based cable magnets. In particular, we discuss the design, calibration and installation of dedicated mass flow meters for every conductor layer in a multi-layer magnet. The design and manufacture of dedicated calibration heaters for each flow path is also described. When used in concert with inlet and outlet pressure and temperature sensors, these upgrades allow us to characterize the hydraulic response of each conductor layer. When deployed as a helium flow calorimeter, the configuration provides a cross-check of DC power dissipation in layer-to-layer conductor joints, facilitates the determination of AC loss heating during swept current and exponential current dump discharges, and permits a more accurate assessment of the energy dissipation within a magnet during quenching. Representative examples for each type of measurement are shown.</description><subject>Alternating current</subject><subject>Calibration</subject><subject>Calorimetry</subject><subject>Coils</subject><subject>Conductors</subject><subject>Cryogenics</subject><subject>Energy dissipation</subject><subject>Heating systems</subject><subject>Helium</subject><subject>helium flow calorimetry</subject><subject>Magnets</subject><subject>Mass flowmeters</subject><subject>Multilayers</subject><subject>Orifices</subject><subject>super- conducting magnet test facility</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Test facilities</subject><subject>Toroidal magnetic fields</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtOwzAUhi0EEqXwAEgMlphTfLczVhGlSK0Yms6W5R6XVGlSHEeob0-qdGA6Z_j-c_kQeqZkRinJ38r5ppgxwsSMS2KUEjdoQqU0GZNU3g49kTQzjPF79NB1B0KoMEJO0HbTnyD6WKXKuxovoa76I17U7S8uXN3G6ggpnrFLOH0DXn-WeAy0za73qWr2eO32DSRcQpfwwvmqrtL5Ed0FV3fwdK1TtF28l8UyW319fBbzVeapVikzAqShzBkgAYBJYAZEHjh4tQuQa8iNlEGHnGjKgBLNgyZeOu-Mc9p4PkWv49xTbH_64QJ7aPvYDCstp0JJozhRA0VHyse26yIEexr-cvFsKbEXe_Ziz17s2au9IfMyZioA-MdrTRUR_A8k8GvF</recordid><startdate>20250801</startdate><enddate>20250801</enddate><creator>Michael, Philip C.</creator><creator>Golfinopoulos, Theodore</creator><creator>Kaplan, Alexey</creator><creator>Schweiger, Shane</creator><creator>Garcia, Ivan</creator><creator>Watterson, Amy</creator><creator>Chamberlain, Sarah</creator><creator>Nash, Daniel</creator><creator>Craighill, Christopher</creator><creator>Sanabria, Charlie</creator><creator>Laamanen, Eric</creator><creator>McCormack, Colin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5017-5309</orcidid><orcidid>https://orcid.org/0009-0004-9149-4786</orcidid><orcidid>https://orcid.org/0009-0004-9576-1087</orcidid><orcidid>https://orcid.org/0000-0002-0898-5217</orcidid><orcidid>https://orcid.org/0009-0008-4412-2612</orcidid><orcidid>https://orcid.org/0000-0002-7857-3701</orcidid><orcidid>https://orcid.org/0000-0003-4906-6169</orcidid></search><sort><creationdate>20250801</creationdate><title>Supercritical Helium Flow Calorimetry at the MIT Superconducting Magnet Test Facility</title><author>Michael, Philip C. ; Golfinopoulos, Theodore ; Kaplan, Alexey ; Schweiger, Shane ; Garcia, Ivan ; Watterson, Amy ; Chamberlain, Sarah ; Nash, Daniel ; Craighill, Christopher ; Sanabria, Charlie ; Laamanen, Eric ; McCormack, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-84e5812a8e0fee25e28e49f3ec6dfe97e9855f7f90712e1073f70c5aca8aa78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alternating current</topic><topic>Calibration</topic><topic>Calorimetry</topic><topic>Coils</topic><topic>Conductors</topic><topic>Cryogenics</topic><topic>Energy dissipation</topic><topic>Heating systems</topic><topic>Helium</topic><topic>helium flow calorimetry</topic><topic>Magnets</topic><topic>Mass flowmeters</topic><topic>Multilayers</topic><topic>Orifices</topic><topic>super- conducting magnet test facility</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Test facilities</topic><topic>Toroidal magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michael, Philip C.</creatorcontrib><creatorcontrib>Golfinopoulos, Theodore</creatorcontrib><creatorcontrib>Kaplan, Alexey</creatorcontrib><creatorcontrib>Schweiger, Shane</creatorcontrib><creatorcontrib>Garcia, Ivan</creatorcontrib><creatorcontrib>Watterson, Amy</creatorcontrib><creatorcontrib>Chamberlain, Sarah</creatorcontrib><creatorcontrib>Nash, Daniel</creatorcontrib><creatorcontrib>Craighill, Christopher</creatorcontrib><creatorcontrib>Sanabria, Charlie</creatorcontrib><creatorcontrib>Laamanen, Eric</creatorcontrib><creatorcontrib>McCormack, Colin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Michael, Philip C.</au><au>Golfinopoulos, Theodore</au><au>Kaplan, Alexey</au><au>Schweiger, Shane</au><au>Garcia, Ivan</au><au>Watterson, Amy</au><au>Chamberlain, Sarah</au><au>Nash, Daniel</au><au>Craighill, Christopher</au><au>Sanabria, Charlie</au><au>Laamanen, Eric</au><au>McCormack, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercritical Helium Flow Calorimetry at the MIT Superconducting Magnet Test Facility</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2025-08-01</date><risdate>2025</risdate><volume>35</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This paper presents recent upgrades to the supercritical helium circuit at the MIT Superconducting Magnet Test Facility to support the characterization of REBCO-based cable magnets. In particular, we discuss the design, calibration and installation of dedicated mass flow meters for every conductor layer in a multi-layer magnet. The design and manufacture of dedicated calibration heaters for each flow path is also described. When used in concert with inlet and outlet pressure and temperature sensors, these upgrades allow us to characterize the hydraulic response of each conductor layer. When deployed as a helium flow calorimeter, the configuration provides a cross-check of DC power dissipation in layer-to-layer conductor joints, facilitates the determination of AC loss heating during swept current and exponential current dump discharges, and permits a more accurate assessment of the energy dissipation within a magnet during quenching. Representative examples for each type of measurement are shown.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3508664</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5017-5309</orcidid><orcidid>https://orcid.org/0009-0004-9149-4786</orcidid><orcidid>https://orcid.org/0009-0004-9576-1087</orcidid><orcidid>https://orcid.org/0000-0002-0898-5217</orcidid><orcidid>https://orcid.org/0009-0008-4412-2612</orcidid><orcidid>https://orcid.org/0000-0002-7857-3701</orcidid><orcidid>https://orcid.org/0000-0003-4906-6169</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2025-08, Vol.35 (5), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_10771604 |
source | IEEE Electronic Library (IEL) |
subjects | Alternating current Calibration Calorimetry Coils Conductors Cryogenics Energy dissipation Heating systems Helium helium flow calorimetry Magnets Mass flowmeters Multilayers Orifices super- conducting magnet test facility Superconducting magnets Superconductivity Temperature measurement Temperature sensors Test facilities Toroidal magnetic fields |
title | Supercritical Helium Flow Calorimetry at the MIT Superconducting Magnet Test Facility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercritical%20Helium%20Flow%20Calorimetry%20at%20the%20MIT%20Superconducting%20Magnet%20Test%20Facility&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Michael,%20Philip%20C.&rft.date=2025-08-01&rft.volume=35&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3508664&rft_dat=%3Cproquest_RIE%3E3146586306%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586306&rft_id=info:pmid/&rft_ieee_id=10771604&rfr_iscdi=true |