SGFNet: Structure-Guided Few-Shot Object Detection

Few-shot object detection (FSOD) focuses on detecting objects of novel classes with only a small number of annotated samples. Due to the limited number of new class samples and the presence of intra-class variance, current FSOD methods struggle to acquire sufficient discriminative information to rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-11, p.1-1
Hauptverfasser: Ma, Jingkai, Bai, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on circuits and systems for video technology
container_volume
creator Ma, Jingkai
Bai, Shuang
description Few-shot object detection (FSOD) focuses on detecting objects of novel classes with only a small number of annotated samples. Due to the limited number of new class samples and the presence of intra-class variance, current FSOD methods struggle to acquire sufficient discriminative information to represent the corresponding class, thus restricting the performance of FSOD. To address this issue, we propose a Structure-Guided Few-shot object detection (SGFNet) method that utilizes the structural information of targets to provide richer discriminative information. Specifically, we first design a Multi-Frequency Structural Feature (MFSF) module, where the highly discriminative structural information of objects in images is extracted and used to enhance the discriminativeness of the features of the target. Based on the MFSF, we then propose a Saliency Information Enhancement (SIE) module that utilizes saliency information to enhance the object-related structural features while suppressing background interference. In addition, we present a novel Soft Cosine Classifier (SCC) based on soft cosine similarity to extract consistent discriminative information between the support and query features for distinguishing targets. Extensive experiments on PASCAL VOC and MS COCO demonstrate that our method significantly outperforms a strong baseline (up to 13.8%) and previous state-of-the-art methods (4.8% in average).
doi_str_mv 10.1109/TCSVT.2024.3507863
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10770244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10770244</ieee_id><sourcerecordid>10_1109_TCSVT_2024_3507863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644-68308f46d12272e5a191e4096a38894c875b2670d2c556e73c09768251ff044d3</originalsourceid><addsrcrecordid>eNpNj81Kw0AUhQdRsFZfQFzkBSbeufMbdxJNFIpdJLgN6eQGU9TKZIL49qa2C1fnLM534GPsWkAqBGS3dV691ikCqlRqsM7IE7YQWjuOCPp07qAFdyj0ObsYxy2AUE7ZBcOqLF4o3iVVDJOPUyBeTkNHXVLQN6_edjFZb7bkY_JAcY5h93nJzvr2faSrYy5ZXTzW-RNfrcvn_H7FvVGKGyfB9cp0AtEi6VZkghRkppXOZco7qzdoLHTotTZkpYfMGoda9D0o1cklw8OtD7txDNQ3X2H4aMNPI6DZSzd_0s1eujlKz9DNARqI6B9g7bxS8hfhLVCV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SGFNet: Structure-Guided Few-Shot Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Jingkai ; Bai, Shuang</creator><creatorcontrib>Ma, Jingkai ; Bai, Shuang</creatorcontrib><description>Few-shot object detection (FSOD) focuses on detecting objects of novel classes with only a small number of annotated samples. Due to the limited number of new class samples and the presence of intra-class variance, current FSOD methods struggle to acquire sufficient discriminative information to represent the corresponding class, thus restricting the performance of FSOD. To address this issue, we propose a Structure-Guided Few-shot object detection (SGFNet) method that utilizes the structural information of targets to provide richer discriminative information. Specifically, we first design a Multi-Frequency Structural Feature (MFSF) module, where the highly discriminative structural information of objects in images is extracted and used to enhance the discriminativeness of the features of the target. Based on the MFSF, we then propose a Saliency Information Enhancement (SIE) module that utilizes saliency information to enhance the object-related structural features while suppressing background interference. In addition, we present a novel Soft Cosine Classifier (SCC) based on soft cosine similarity to extract consistent discriminative information between the support and query features for distinguishing targets. Extensive experiments on PASCAL VOC and MS COCO demonstrate that our method significantly outperforms a strong baseline (up to 13.8%) and previous state-of-the-art methods (4.8% in average).</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3507863</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Data mining ; Feature extraction ; Few shot learning ; Few-shot ; Filtering ; Frequency-domain analysis ; Interference ; Object detection ; saliency information ; soft cosine similarity ; structural information ; Training ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4586-8754 ; 0009-0005-0739-8239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10770244$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10770244$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Jingkai</creatorcontrib><creatorcontrib>Bai, Shuang</creatorcontrib><title>SGFNet: Structure-Guided Few-Shot Object Detection</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Few-shot object detection (FSOD) focuses on detecting objects of novel classes with only a small number of annotated samples. Due to the limited number of new class samples and the presence of intra-class variance, current FSOD methods struggle to acquire sufficient discriminative information to represent the corresponding class, thus restricting the performance of FSOD. To address this issue, we propose a Structure-Guided Few-shot object detection (SGFNet) method that utilizes the structural information of targets to provide richer discriminative information. Specifically, we first design a Multi-Frequency Structural Feature (MFSF) module, where the highly discriminative structural information of objects in images is extracted and used to enhance the discriminativeness of the features of the target. Based on the MFSF, we then propose a Saliency Information Enhancement (SIE) module that utilizes saliency information to enhance the object-related structural features while suppressing background interference. In addition, we present a novel Soft Cosine Classifier (SCC) based on soft cosine similarity to extract consistent discriminative information between the support and query features for distinguishing targets. Extensive experiments on PASCAL VOC and MS COCO demonstrate that our method significantly outperforms a strong baseline (up to 13.8%) and previous state-of-the-art methods (4.8% in average).</description><subject>Correlation</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Few shot learning</subject><subject>Few-shot</subject><subject>Filtering</subject><subject>Frequency-domain analysis</subject><subject>Interference</subject><subject>Object detection</subject><subject>saliency information</subject><subject>soft cosine similarity</subject><subject>structural information</subject><subject>Training</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj81Kw0AUhQdRsFZfQFzkBSbeufMbdxJNFIpdJLgN6eQGU9TKZIL49qa2C1fnLM534GPsWkAqBGS3dV691ikCqlRqsM7IE7YQWjuOCPp07qAFdyj0ObsYxy2AUE7ZBcOqLF4o3iVVDJOPUyBeTkNHXVLQN6_edjFZb7bkY_JAcY5h93nJzvr2faSrYy5ZXTzW-RNfrcvn_H7FvVGKGyfB9cp0AtEi6VZkghRkppXOZco7qzdoLHTotTZkpYfMGoda9D0o1cklw8OtD7txDNQ3X2H4aMNPI6DZSzd_0s1eujlKz9DNARqI6B9g7bxS8hfhLVCV</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Ma, Jingkai</creator><creator>Bai, Shuang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4586-8754</orcidid><orcidid>https://orcid.org/0009-0005-0739-8239</orcidid></search><sort><creationdate>20241127</creationdate><title>SGFNet: Structure-Guided Few-Shot Object Detection</title><author>Ma, Jingkai ; Bai, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644-68308f46d12272e5a191e4096a38894c875b2670d2c556e73c09768251ff044d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Correlation</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Few shot learning</topic><topic>Few-shot</topic><topic>Filtering</topic><topic>Frequency-domain analysis</topic><topic>Interference</topic><topic>Object detection</topic><topic>saliency information</topic><topic>soft cosine similarity</topic><topic>structural information</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jingkai</creatorcontrib><creatorcontrib>Bai, Shuang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Jingkai</au><au>Bai, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SGFNet: Structure-Guided Few-Shot Object Detection</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-11-27</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Few-shot object detection (FSOD) focuses on detecting objects of novel classes with only a small number of annotated samples. Due to the limited number of new class samples and the presence of intra-class variance, current FSOD methods struggle to acquire sufficient discriminative information to represent the corresponding class, thus restricting the performance of FSOD. To address this issue, we propose a Structure-Guided Few-shot object detection (SGFNet) method that utilizes the structural information of targets to provide richer discriminative information. Specifically, we first design a Multi-Frequency Structural Feature (MFSF) module, where the highly discriminative structural information of objects in images is extracted and used to enhance the discriminativeness of the features of the target. Based on the MFSF, we then propose a Saliency Information Enhancement (SIE) module that utilizes saliency information to enhance the object-related structural features while suppressing background interference. In addition, we present a novel Soft Cosine Classifier (SCC) based on soft cosine similarity to extract consistent discriminative information between the support and query features for distinguishing targets. Extensive experiments on PASCAL VOC and MS COCO demonstrate that our method significantly outperforms a strong baseline (up to 13.8%) and previous state-of-the-art methods (4.8% in average).</abstract><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3507863</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4586-8754</orcidid><orcidid>https://orcid.org/0009-0005-0739-8239</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-11, p.1-1
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_10770244
source IEEE Electronic Library (IEL)
subjects Correlation
Data mining
Feature extraction
Few shot learning
Few-shot
Filtering
Frequency-domain analysis
Interference
Object detection
saliency information
soft cosine similarity
structural information
Training
Visualization
title SGFNet: Structure-Guided Few-Shot Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SGFNet:%20Structure-Guided%20Few-Shot%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Ma,%20Jingkai&rft.date=2024-11-27&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3507863&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSVT_2024_3507863%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10770244&rfr_iscdi=true