Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory
In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. Wh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on wireless communications |
container_volume | |
creator | Feng, Yuan Zhao, Chuanbin Gao, Feifei Zhang, Yong Ma, Shaodan |
description | In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively. |
doi_str_mv | 10.1109/TWC.2024.3498058 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10762896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10762896</ieee_id><sourcerecordid>10_1109_TWC_2024_3498058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-bc324e4950ec113af1012571575b1bed3f75fa088a0c53480a160c0b4614683d3</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWKt3Dx7yB7a-b742e9RSP6Cg2IrHJZt9oxGbleyi9N-7pT14mjnMDMPD2CXCDBGq6_XbfCZAqJlUlQVtj9gEtbaFEMoe77w0BYrSnLKzvv8EwNJoPWEvi_QTc5c2lAa-otTH9F642FLLb8lt-HOmNvohdon_xuGDr7NLfaDMl-RyGsM8dJmvNi4P_M75ocvbc3YS3FdPFwedste7xXr-UCyf7h_nN8vCIyhbNF4KRarSQB5RuoCAQpeoS91gQ60MpQ4OrHXgtVQWHBrw0CiDyljZyimD_a7PXd9nCvV3juORbY1Q75jUI5N6x6Q-MBkrV_tKJKJ_8dIIWxn5By-iXQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Yuan ; Zhao, Chuanbin ; Gao, Feifei ; Zhang, Yong ; Ma, Shaodan</creator><creatorcontrib>Feng, Yuan ; Zhao, Chuanbin ; Gao, Feifei ; Zhang, Yong ; Ma, Shaodan</creatorcontrib><description>In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3498058</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; beam prediction ; Cameras ; Costs ; Data models ; Environment sensing ; Feature extraction ; Millimeter wave communication ; mmWave ; Predictive models ; Sensors ; Smart manufacturing ; transfer learning ; Vehicle dynamics</subject><ispartof>IEEE transactions on wireless communications, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0003-6982-1296 ; 0000-0001-5521-3650 ; 0000-0001-8896-352X ; 0009-0003-3668-4926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10762896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10762896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Zhao, Chuanbin</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ma, Shaodan</creatorcontrib><title>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.</description><subject>Accuracy</subject><subject>beam prediction</subject><subject>Cameras</subject><subject>Costs</subject><subject>Data models</subject><subject>Environment sensing</subject><subject>Feature extraction</subject><subject>Millimeter wave communication</subject><subject>mmWave</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>Smart manufacturing</subject><subject>transfer learning</subject><subject>Vehicle dynamics</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEYhIMoWKt3Dx7yB7a-b742e9RSP6Cg2IrHJZt9oxGbleyi9N-7pT14mjnMDMPD2CXCDBGq6_XbfCZAqJlUlQVtj9gEtbaFEMoe77w0BYrSnLKzvv8EwNJoPWEvi_QTc5c2lAa-otTH9F642FLLb8lt-HOmNvohdon_xuGDr7NLfaDMl-RyGsM8dJmvNi4P_M75ocvbc3YS3FdPFwedste7xXr-UCyf7h_nN8vCIyhbNF4KRarSQB5RuoCAQpeoS91gQ60MpQ4OrHXgtVQWHBrw0CiDyljZyimD_a7PXd9nCvV3juORbY1Q75jUI5N6x6Q-MBkrV_tKJKJ_8dIIWxn5By-iXQg</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Feng, Yuan</creator><creator>Zhao, Chuanbin</creator><creator>Gao, Feifei</creator><creator>Zhang, Yong</creator><creator>Ma, Shaodan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-6982-1296</orcidid><orcidid>https://orcid.org/0000-0001-5521-3650</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid><orcidid>https://orcid.org/0009-0003-3668-4926</orcidid></search><sort><creationdate>20241121</creationdate><title>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</title><author>Feng, Yuan ; Zhao, Chuanbin ; Gao, Feifei ; Zhang, Yong ; Ma, Shaodan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-bc324e4950ec113af1012571575b1bed3f75fa088a0c53480a160c0b4614683d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>beam prediction</topic><topic>Cameras</topic><topic>Costs</topic><topic>Data models</topic><topic>Environment sensing</topic><topic>Feature extraction</topic><topic>Millimeter wave communication</topic><topic>mmWave</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>Smart manufacturing</topic><topic>transfer learning</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Zhao, Chuanbin</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ma, Shaodan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Yuan</au><au>Zhao, Chuanbin</au><au>Gao, Feifei</au><au>Zhang, Yong</au><au>Ma, Shaodan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-11-21</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.</abstract><pub>IEEE</pub><doi>10.1109/TWC.2024.3498058</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-6982-1296</orcidid><orcidid>https://orcid.org/0000-0001-5521-3650</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid><orcidid>https://orcid.org/0009-0003-3668-4926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-11, p.1-1 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_10762896 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy beam prediction Cameras Costs Data models Environment sensing Feature extraction Millimeter wave communication mmWave Predictive models Sensors Smart manufacturing transfer learning Vehicle dynamics |
title | Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environment%20Sensing-aided%20Beam%20Prediction%20with%20Transfer%20Learning%20for%20Smart%20Factory&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Feng,%20Yuan&rft.date=2024-11-21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3498058&rft_dat=%3Ccrossref_RIE%3E10_1109_TWC_2024_3498058%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10762896&rfr_iscdi=true |