Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory

In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. Wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-11, p.1-1
Hauptverfasser: Feng, Yuan, Zhao, Chuanbin, Gao, Feifei, Zhang, Yong, Ma, Shaodan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume
creator Feng, Yuan
Zhao, Chuanbin
Gao, Feifei
Zhang, Yong
Ma, Shaodan
description In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.
doi_str_mv 10.1109/TWC.2024.3498058
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10762896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10762896</ieee_id><sourcerecordid>10_1109_TWC_2024_3498058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-bc324e4950ec113af1012571575b1bed3f75fa088a0c53480a160c0b4614683d3</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWKt3Dx7yB7a-b742e9RSP6Cg2IrHJZt9oxGbleyi9N-7pT14mjnMDMPD2CXCDBGq6_XbfCZAqJlUlQVtj9gEtbaFEMoe77w0BYrSnLKzvv8EwNJoPWEvi_QTc5c2lAa-otTH9F642FLLb8lt-HOmNvohdon_xuGDr7NLfaDMl-RyGsM8dJmvNi4P_M75ocvbc3YS3FdPFwedste7xXr-UCyf7h_nN8vCIyhbNF4KRarSQB5RuoCAQpeoS91gQ60MpQ4OrHXgtVQWHBrw0CiDyljZyimD_a7PXd9nCvV3juORbY1Q75jUI5N6x6Q-MBkrV_tKJKJ_8dIIWxn5By-iXQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Yuan ; Zhao, Chuanbin ; Gao, Feifei ; Zhang, Yong ; Ma, Shaodan</creator><creatorcontrib>Feng, Yuan ; Zhao, Chuanbin ; Gao, Feifei ; Zhang, Yong ; Ma, Shaodan</creatorcontrib><description>In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3498058</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; beam prediction ; Cameras ; Costs ; Data models ; Environment sensing ; Feature extraction ; Millimeter wave communication ; mmWave ; Predictive models ; Sensors ; Smart manufacturing ; transfer learning ; Vehicle dynamics</subject><ispartof>IEEE transactions on wireless communications, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0003-6982-1296 ; 0000-0001-5521-3650 ; 0000-0001-8896-352X ; 0009-0003-3668-4926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10762896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10762896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Zhao, Chuanbin</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ma, Shaodan</creatorcontrib><title>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.</description><subject>Accuracy</subject><subject>beam prediction</subject><subject>Cameras</subject><subject>Costs</subject><subject>Data models</subject><subject>Environment sensing</subject><subject>Feature extraction</subject><subject>Millimeter wave communication</subject><subject>mmWave</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>Smart manufacturing</subject><subject>transfer learning</subject><subject>Vehicle dynamics</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEYhIMoWKt3Dx7yB7a-b742e9RSP6Cg2IrHJZt9oxGbleyi9N-7pT14mjnMDMPD2CXCDBGq6_XbfCZAqJlUlQVtj9gEtbaFEMoe77w0BYrSnLKzvv8EwNJoPWEvi_QTc5c2lAa-otTH9F642FLLb8lt-HOmNvohdon_xuGDr7NLfaDMl-RyGsM8dJmvNi4P_M75ocvbc3YS3FdPFwedste7xXr-UCyf7h_nN8vCIyhbNF4KRarSQB5RuoCAQpeoS91gQ60MpQ4OrHXgtVQWHBrw0CiDyljZyimD_a7PXd9nCvV3juORbY1Q75jUI5N6x6Q-MBkrV_tKJKJ_8dIIWxn5By-iXQg</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Feng, Yuan</creator><creator>Zhao, Chuanbin</creator><creator>Gao, Feifei</creator><creator>Zhang, Yong</creator><creator>Ma, Shaodan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-6982-1296</orcidid><orcidid>https://orcid.org/0000-0001-5521-3650</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid><orcidid>https://orcid.org/0009-0003-3668-4926</orcidid></search><sort><creationdate>20241121</creationdate><title>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</title><author>Feng, Yuan ; Zhao, Chuanbin ; Gao, Feifei ; Zhang, Yong ; Ma, Shaodan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-bc324e4950ec113af1012571575b1bed3f75fa088a0c53480a160c0b4614683d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>beam prediction</topic><topic>Cameras</topic><topic>Costs</topic><topic>Data models</topic><topic>Environment sensing</topic><topic>Feature extraction</topic><topic>Millimeter wave communication</topic><topic>mmWave</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>Smart manufacturing</topic><topic>transfer learning</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Zhao, Chuanbin</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ma, Shaodan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Yuan</au><au>Zhao, Chuanbin</au><au>Gao, Feifei</au><au>Zhang, Yong</au><au>Ma, Shaodan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-11-21</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, we propose an environment sensing-aided beam prediction model for smart factory that can be transferred from given environments to a new environment. In particular, we first design a pre-training model that predicts the optimal beam by sensing the present environmental information. When encountering a new environment, it generally requires collecting a large amount of new training data to retrain the model, whose cost severely impedes the application of the designed pre-training model. Therefore, we next design a transfer learning strategy that fine-tunes the pre-trained model by limited labeled data of the new environment. Simulation results show that when the pre-trained model is fine-tuned by 30% of labeled data from the new environment, the Top-10 beam prediction accuracy reaches 94%. Moreover, compared with the way to completely re-training the prediction model, the amount of training data and the time cost of the proposed transfer learning strategy reduce 70% and 75% respectively.</abstract><pub>IEEE</pub><doi>10.1109/TWC.2024.3498058</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-6982-1296</orcidid><orcidid>https://orcid.org/0000-0001-5521-3650</orcidid><orcidid>https://orcid.org/0000-0001-8896-352X</orcidid><orcidid>https://orcid.org/0009-0003-3668-4926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-11, p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_10762896
source IEEE Electronic Library (IEL)
subjects Accuracy
beam prediction
Cameras
Costs
Data models
Environment sensing
Feature extraction
Millimeter wave communication
mmWave
Predictive models
Sensors
Smart manufacturing
transfer learning
Vehicle dynamics
title Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environment%20Sensing-aided%20Beam%20Prediction%20with%20Transfer%20Learning%20for%20Smart%20Factory&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Feng,%20Yuan&rft.date=2024-11-21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3498058&rft_dat=%3Ccrossref_RIE%3E10_1109_TWC_2024_3498058%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10762896&rfr_iscdi=true