Bridging the Gap: Evaluating Transfer Learning Strategies for Block-Level Urban Land Use Classification on Regional Empirical High-Resolution Remote Sensing Imagery

Transfer learning, particularly through pre-training and fine-tuning strategies, is widely used to address the substantial training sample requirement of deep learning methods for urban land use classification using high spatial resolution remote sensing imagery. However, most studies utilize natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024-11, p.1-20
Hauptverfasser: Zhang, Qingyang, Wang, Zhihua, Yang, Xiaomei, Lai, Feilin, Liu, Yueming, Gao, Ku, Luo, Haofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 1
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume
creator Zhang, Qingyang
Wang, Zhihua
Yang, Xiaomei
Lai, Feilin
Liu, Yueming
Gao, Ku
Luo, Haofeng
description Transfer learning, particularly through pre-training and fine-tuning strategies, is widely used to address the substantial training sample requirement of deep learning methods for urban land use classification using high spatial resolution remote sensing imagery. However, most studies utilize natural images as the source domain, which still presents significant differences compared to remote sensing images. Furthermore, most existing studies focus primarily on the accuracy of different strategies, often overlooking that they are tested on experimental non-geographical grid patch datasets instead of regional empirical datasets. This oversight raises concerns about the replicability of their high accuracy in practical urban land use settings. In this study, we employed a general object-oriented deep learning framework for remote sensing classification of urban land use, using Beijing as the empirical region, to assess the effectiveness of different pre-training and fine-tuning methods on practical geospatial data. Our findings reveal that while accuracy on non-geographical grid scale datasets reached 88%, it significantly dropped to 67% when applied to the empirical data in Beijing region. By incorporating a two-stage pre-training approach using natural image dataset as the source domain and integrating a remote sensing image dataset as an intermediate domain, this technique improves regional classification accuracy by 3.78%. Our results indicate four factors contributing to the accuracy discrepancy: sample selection bias, mixed-use within blocks, imbalanced land use class proportions, and spatial heterogeneity.The study underscores the importance of regional empirical experiments and offers insights into mitigation methods for accuracy discrepancies in the transfer learning application to remote sensing.
doi_str_mv 10.1109/JSTARS.2024.3503924
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10759784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10759784</ieee_id><sourcerecordid>10_1109_JSTARS_2024_3503924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1104-b4a37cd66e494236741cf93c4da017fc338e9de9bd78caacc2fdbdcc30ffb44d3</originalsourceid><addsrcrecordid>eNpNkEtqwzAQhkVpoenjBO1CF3AqWXIcdZeE9IWhkMfajKWRo9axg-QEcp8etHaTRWFg4J_5ZuAj5IGzIedMPX0sV5PFchizWA5FwoSK5QUZxDzhEU9EckkGXAkVccnkNbkJ4YuxUZwqMSA_U-9M6eqSthukr7B7pvMDVHto-2zloQ4WPc0QfN0ny9ZDi6XDQG3j6bRq9HeU4QEruvYF1DSD2tB1QDqrIARnne5ONTXtatFxTQ0VnW93zneDir65chMtMDTV_m9rgdumRbrEOvTf3rdQoj_ekSsLVcD7c78l65f5avYWZZ-v77NJFunOgowKCSLVZjRCqWQsRqnk2iqhpQHGU6uFGKMyqAqTjjWA1rE1hdFaMGsLKY24JeJ0V_smBI8233m3BX_MOct70flJdN6Lzs-iO-rxRDlE_EekiUrHUvwC1wt-3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bridging the Gap: Evaluating Transfer Learning Strategies for Block-Level Urban Land Use Classification on Regional Empirical High-Resolution Remote Sensing Imagery</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Qingyang ; Wang, Zhihua ; Yang, Xiaomei ; Lai, Feilin ; Liu, Yueming ; Gao, Ku ; Luo, Haofeng</creator><creatorcontrib>Zhang, Qingyang ; Wang, Zhihua ; Yang, Xiaomei ; Lai, Feilin ; Liu, Yueming ; Gao, Ku ; Luo, Haofeng</creatorcontrib><description>Transfer learning, particularly through pre-training and fine-tuning strategies, is widely used to address the substantial training sample requirement of deep learning methods for urban land use classification using high spatial resolution remote sensing imagery. However, most studies utilize natural images as the source domain, which still presents significant differences compared to remote sensing images. Furthermore, most existing studies focus primarily on the accuracy of different strategies, often overlooking that they are tested on experimental non-geographical grid patch datasets instead of regional empirical datasets. This oversight raises concerns about the replicability of their high accuracy in practical urban land use settings. In this study, we employed a general object-oriented deep learning framework for remote sensing classification of urban land use, using Beijing as the empirical region, to assess the effectiveness of different pre-training and fine-tuning methods on practical geospatial data. Our findings reveal that while accuracy on non-geographical grid scale datasets reached 88%, it significantly dropped to 67% when applied to the empirical data in Beijing region. By incorporating a two-stage pre-training approach using natural image dataset as the source domain and integrating a remote sensing image dataset as an intermediate domain, this technique improves regional classification accuracy by 3.78%. Our results indicate four factors contributing to the accuracy discrepancy: sample selection bias, mixed-use within blocks, imbalanced land use class proportions, and spatial heterogeneity.The study underscores the importance of regional empirical experiments and offers insights into mitigation methods for accuracy discrepancies in the transfer learning application to remote sensing.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3503924</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Analytical models ; convolutional neural network ; Deep learning ; high-resolution remote sensing images ; Object oriented modeling ; Remote sensing ; Roads ; Sensors ; Testing ; Training ; Transfer learning ; Urban land use</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024-11, p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6776-2910 ; 0009-0000-5748-7014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Qingyang</creatorcontrib><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Yang, Xiaomei</creatorcontrib><creatorcontrib>Lai, Feilin</creatorcontrib><creatorcontrib>Liu, Yueming</creatorcontrib><creatorcontrib>Gao, Ku</creatorcontrib><creatorcontrib>Luo, Haofeng</creatorcontrib><title>Bridging the Gap: Evaluating Transfer Learning Strategies for Block-Level Urban Land Use Classification on Regional Empirical High-Resolution Remote Sensing Imagery</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Transfer learning, particularly through pre-training and fine-tuning strategies, is widely used to address the substantial training sample requirement of deep learning methods for urban land use classification using high spatial resolution remote sensing imagery. However, most studies utilize natural images as the source domain, which still presents significant differences compared to remote sensing images. Furthermore, most existing studies focus primarily on the accuracy of different strategies, often overlooking that they are tested on experimental non-geographical grid patch datasets instead of regional empirical datasets. This oversight raises concerns about the replicability of their high accuracy in practical urban land use settings. In this study, we employed a general object-oriented deep learning framework for remote sensing classification of urban land use, using Beijing as the empirical region, to assess the effectiveness of different pre-training and fine-tuning methods on practical geospatial data. Our findings reveal that while accuracy on non-geographical grid scale datasets reached 88%, it significantly dropped to 67% when applied to the empirical data in Beijing region. By incorporating a two-stage pre-training approach using natural image dataset as the source domain and integrating a remote sensing image dataset as an intermediate domain, this technique improves regional classification accuracy by 3.78%. Our results indicate four factors contributing to the accuracy discrepancy: sample selection bias, mixed-use within blocks, imbalanced land use class proportions, and spatial heterogeneity.The study underscores the importance of regional empirical experiments and offers insights into mitigation methods for accuracy discrepancies in the transfer learning application to remote sensing.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>high-resolution remote sensing images</subject><subject>Object oriented modeling</subject><subject>Remote sensing</subject><subject>Roads</subject><subject>Sensors</subject><subject>Testing</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Urban land use</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtqwzAQhkVpoenjBO1CF3AqWXIcdZeE9IWhkMfajKWRo9axg-QEcp8etHaTRWFg4J_5ZuAj5IGzIedMPX0sV5PFchizWA5FwoSK5QUZxDzhEU9EckkGXAkVccnkNbkJ4YuxUZwqMSA_U-9M6eqSthukr7B7pvMDVHto-2zloQ4WPc0QfN0ny9ZDi6XDQG3j6bRq9HeU4QEruvYF1DSD2tB1QDqrIARnne5ONTXtatFxTQ0VnW93zneDir65chMtMDTV_m9rgdumRbrEOvTf3rdQoj_ekSsLVcD7c78l65f5avYWZZ-v77NJFunOgowKCSLVZjRCqWQsRqnk2iqhpQHGU6uFGKMyqAqTjjWA1rE1hdFaMGsLKY24JeJ0V_smBI8233m3BX_MOct70flJdN6Lzs-iO-rxRDlE_EekiUrHUvwC1wt-3w</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Zhang, Qingyang</creator><creator>Wang, Zhihua</creator><creator>Yang, Xiaomei</creator><creator>Lai, Feilin</creator><creator>Liu, Yueming</creator><creator>Gao, Ku</creator><creator>Luo, Haofeng</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6776-2910</orcidid><orcidid>https://orcid.org/0009-0000-5748-7014</orcidid></search><sort><creationdate>20241120</creationdate><title>Bridging the Gap: Evaluating Transfer Learning Strategies for Block-Level Urban Land Use Classification on Regional Empirical High-Resolution Remote Sensing Imagery</title><author>Zhang, Qingyang ; Wang, Zhihua ; Yang, Xiaomei ; Lai, Feilin ; Liu, Yueming ; Gao, Ku ; Luo, Haofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1104-b4a37cd66e494236741cf93c4da017fc338e9de9bd78caacc2fdbdcc30ffb44d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>high-resolution remote sensing images</topic><topic>Object oriented modeling</topic><topic>Remote sensing</topic><topic>Roads</topic><topic>Sensors</topic><topic>Testing</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Urban land use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qingyang</creatorcontrib><creatorcontrib>Wang, Zhihua</creatorcontrib><creatorcontrib>Yang, Xiaomei</creatorcontrib><creatorcontrib>Lai, Feilin</creatorcontrib><creatorcontrib>Liu, Yueming</creatorcontrib><creatorcontrib>Gao, Ku</creatorcontrib><creatorcontrib>Luo, Haofeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qingyang</au><au>Wang, Zhihua</au><au>Yang, Xiaomei</au><au>Lai, Feilin</au><au>Liu, Yueming</au><au>Gao, Ku</au><au>Luo, Haofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging the Gap: Evaluating Transfer Learning Strategies for Block-Level Urban Land Use Classification on Regional Empirical High-Resolution Remote Sensing Imagery</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024-11-20</date><risdate>2024</risdate><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Transfer learning, particularly through pre-training and fine-tuning strategies, is widely used to address the substantial training sample requirement of deep learning methods for urban land use classification using high spatial resolution remote sensing imagery. However, most studies utilize natural images as the source domain, which still presents significant differences compared to remote sensing images. Furthermore, most existing studies focus primarily on the accuracy of different strategies, often overlooking that they are tested on experimental non-geographical grid patch datasets instead of regional empirical datasets. This oversight raises concerns about the replicability of their high accuracy in practical urban land use settings. In this study, we employed a general object-oriented deep learning framework for remote sensing classification of urban land use, using Beijing as the empirical region, to assess the effectiveness of different pre-training and fine-tuning methods on practical geospatial data. Our findings reveal that while accuracy on non-geographical grid scale datasets reached 88%, it significantly dropped to 67% when applied to the empirical data in Beijing region. By incorporating a two-stage pre-training approach using natural image dataset as the source domain and integrating a remote sensing image dataset as an intermediate domain, this technique improves regional classification accuracy by 3.78%. Our results indicate four factors contributing to the accuracy discrepancy: sample selection bias, mixed-use within blocks, imbalanced land use class proportions, and spatial heterogeneity.The study underscores the importance of regional empirical experiments and offers insights into mitigation methods for accuracy discrepancies in the transfer learning application to remote sensing.</abstract><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3503924</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6776-2910</orcidid><orcidid>https://orcid.org/0009-0000-5748-7014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024-11, p.1-20
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_10759784
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Analytical models
convolutional neural network
Deep learning
high-resolution remote sensing images
Object oriented modeling
Remote sensing
Roads
Sensors
Testing
Training
Transfer learning
Urban land use
title Bridging the Gap: Evaluating Transfer Learning Strategies for Block-Level Urban Land Use Classification on Regional Empirical High-Resolution Remote Sensing Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20the%20Gap:%20Evaluating%20Transfer%20Learning%20Strategies%20for%20Block-Level%20Urban%20Land%20Use%20Classification%20on%20Regional%20Empirical%20High-Resolution%20Remote%20Sensing%20Imagery&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Zhang,%20Qingyang&rft.date=2024-11-20&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3503924&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSTARS_2024_3503924%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10759784&rfr_iscdi=true