Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring
The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operatin...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | |
creator | Zhao, Wenchao Xu, Wenqing Zhou, Quan Zhang, Ziang Lv, Peiyu Qin, Xu Yang, Limei Gao, Xin Pan, Gebo |
description | The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (>2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots. |
doi_str_mv | 10.1109/JSEN.2024.3497311 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10758374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10758374</ieee_id><sourcerecordid>10_1109_JSEN_2024_3497311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-117e43edfa0eb8c782797641275659f3acdcf58a5023658941e9fecd118221ce3</originalsourceid><addsrcrecordid>eNpNkEFOwzAURCMEEqVwACQWvkCKf2zHzhKqloJKQbQS7CLH-UmNQozsUOjtaWgXrGY0mpnFi6JLoCMAml0_LCeLUUITPmI8kwzgKBqAECoGydVx7xmNOZNvp9FZCO-UQiaFHERhZut1syVLbIPt7AbJtMEfWzT4FzlP3AY90eTVlkjmtkXt4xfd1khudcCSuJaMtS92stCt674KJJ371r4M5Hm9DdY1rrZGN-TRtbZz3rb1eXRS6SbgxUGH0Wo6WY1n8fzp7n58M49NyngMIJEzLCtNsVBGqkRmMuWQSJGKrGLalKYSSguasFSojANmFZoSQCUJGGTDCPa3xrsQPFb5p7cf2m9zoHkPLe-h5T20_ABtt7nabywi_utLoZjk7BfTumoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Wenchao ; Xu, Wenqing ; Zhou, Quan ; Zhang, Ziang ; Lv, Peiyu ; Qin, Xu ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creator><creatorcontrib>Zhao, Wenchao ; Xu, Wenqing ; Zhou, Quan ; Zhang, Ziang ; Lv, Peiyu ; Qin, Xu ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creatorcontrib><description>The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (>2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3497311</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitive pressure sensor ; carbon nanotubes-based composite ; Dielectric constant ; Dielectric materials ; Dielectrics ; linear sensing ; Nanocomposites ; Polymers ; Robot sensing systems ; self-aggregation ; Sensitivity ; Sensor systems ; Sensors ; Substrates</subject><ispartof>IEEE sensors journal, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-6013-8849 ; 0009-0007-6966-5755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10758374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10758374$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Lv, Peiyu</creatorcontrib><creatorcontrib>Qin, Xu</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><title>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (>2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.</description><subject>Capacitive pressure sensor</subject><subject>carbon nanotubes-based composite</subject><subject>Dielectric constant</subject><subject>Dielectric materials</subject><subject>Dielectrics</subject><subject>linear sensing</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Robot sensing systems</subject><subject>self-aggregation</subject><subject>Sensitivity</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Substrates</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFOwzAURCMEEqVwACQWvkCKf2zHzhKqloJKQbQS7CLH-UmNQozsUOjtaWgXrGY0mpnFi6JLoCMAml0_LCeLUUITPmI8kwzgKBqAECoGydVx7xmNOZNvp9FZCO-UQiaFHERhZut1syVLbIPt7AbJtMEfWzT4FzlP3AY90eTVlkjmtkXt4xfd1khudcCSuJaMtS92stCt674KJJ371r4M5Hm9DdY1rrZGN-TRtbZz3rb1eXRS6SbgxUGH0Wo6WY1n8fzp7n58M49NyngMIJEzLCtNsVBGqkRmMuWQSJGKrGLalKYSSguasFSojANmFZoSQCUJGGTDCPa3xrsQPFb5p7cf2m9zoHkPLe-h5T20_ABtt7nabywi_utLoZjk7BfTumoJ</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Zhao, Wenchao</creator><creator>Xu, Wenqing</creator><creator>Zhou, Quan</creator><creator>Zhang, Ziang</creator><creator>Lv, Peiyu</creator><creator>Qin, Xu</creator><creator>Yang, Limei</creator><creator>Gao, Xin</creator><creator>Pan, Gebo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-6013-8849</orcidid><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></search><sort><creationdate>20241119</creationdate><title>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</title><author>Zhao, Wenchao ; Xu, Wenqing ; Zhou, Quan ; Zhang, Ziang ; Lv, Peiyu ; Qin, Xu ; Yang, Limei ; Gao, Xin ; Pan, Gebo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-117e43edfa0eb8c782797641275659f3acdcf58a5023658941e9fecd118221ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitive pressure sensor</topic><topic>carbon nanotubes-based composite</topic><topic>Dielectric constant</topic><topic>Dielectric materials</topic><topic>Dielectrics</topic><topic>linear sensing</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Robot sensing systems</topic><topic>self-aggregation</topic><topic>Sensitivity</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Lv, Peiyu</creatorcontrib><creatorcontrib>Qin, Xu</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Wenchao</au><au>Xu, Wenqing</au><au>Zhou, Quan</au><au>Zhang, Ziang</au><au>Lv, Peiyu</au><au>Qin, Xu</au><au>Yang, Limei</au><au>Gao, Xin</au><au>Pan, Gebo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-11-19</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (>2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3497311</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0009-6013-8849</orcidid><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-11, p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10758374 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitive pressure sensor carbon nanotubes-based composite Dielectric constant Dielectric materials Dielectrics linear sensing Nanocomposites Polymers Robot sensing systems self-aggregation Sensitivity Sensor systems Sensors Substrates |
title | Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive%20Flexible%20Sensor%20over%20a%20Wide%20Linear-Range%20Based%20on%20Carbon%20Nanotube%20towards%20Physiological%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhao,%20Wenchao&rft.date=2024-11-19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3497311&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3497311%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10758374&rfr_iscdi=true |