Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring

The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-11, p.1-1
Hauptverfasser: Zhao, Wenchao, Xu, Wenqing, Zhou, Quan, Zhang, Ziang, Lv, Peiyu, Qin, Xu, Yang, Limei, Gao, Xin, Pan, Gebo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE sensors journal
container_volume
creator Zhao, Wenchao
Xu, Wenqing
Zhou, Quan
Zhang, Ziang
Lv, Peiyu
Qin, Xu
Yang, Limei
Gao, Xin
Pan, Gebo
description The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (>2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.
doi_str_mv 10.1109/JSEN.2024.3497311
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10758374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10758374</ieee_id><sourcerecordid>10_1109_JSEN_2024_3497311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-117e43edfa0eb8c782797641275659f3acdcf58a5023658941e9fecd118221ce3</originalsourceid><addsrcrecordid>eNpNkEFOwzAURCMEEqVwACQWvkCKf2zHzhKqloJKQbQS7CLH-UmNQozsUOjtaWgXrGY0mpnFi6JLoCMAml0_LCeLUUITPmI8kwzgKBqAECoGydVx7xmNOZNvp9FZCO-UQiaFHERhZut1syVLbIPt7AbJtMEfWzT4FzlP3AY90eTVlkjmtkXt4xfd1khudcCSuJaMtS92stCt674KJJ371r4M5Hm9DdY1rrZGN-TRtbZz3rb1eXRS6SbgxUGH0Wo6WY1n8fzp7n58M49NyngMIJEzLCtNsVBGqkRmMuWQSJGKrGLalKYSSguasFSojANmFZoSQCUJGGTDCPa3xrsQPFb5p7cf2m9zoHkPLe-h5T20_ABtt7nabywi_utLoZjk7BfTumoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Wenchao ; Xu, Wenqing ; Zhou, Quan ; Zhang, Ziang ; Lv, Peiyu ; Qin, Xu ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creator><creatorcontrib>Zhao, Wenchao ; Xu, Wenqing ; Zhou, Quan ; Zhang, Ziang ; Lv, Peiyu ; Qin, Xu ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creatorcontrib><description>The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (&gt;2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3497311</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitive pressure sensor ; carbon nanotubes-based composite ; Dielectric constant ; Dielectric materials ; Dielectrics ; linear sensing ; Nanocomposites ; Polymers ; Robot sensing systems ; self-aggregation ; Sensitivity ; Sensor systems ; Sensors ; Substrates</subject><ispartof>IEEE sensors journal, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-6013-8849 ; 0009-0007-6966-5755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10758374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10758374$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Lv, Peiyu</creatorcontrib><creatorcontrib>Qin, Xu</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><title>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (&gt;2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.</description><subject>Capacitive pressure sensor</subject><subject>carbon nanotubes-based composite</subject><subject>Dielectric constant</subject><subject>Dielectric materials</subject><subject>Dielectrics</subject><subject>linear sensing</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Robot sensing systems</subject><subject>self-aggregation</subject><subject>Sensitivity</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Substrates</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFOwzAURCMEEqVwACQWvkCKf2zHzhKqloJKQbQS7CLH-UmNQozsUOjtaWgXrGY0mpnFi6JLoCMAml0_LCeLUUITPmI8kwzgKBqAECoGydVx7xmNOZNvp9FZCO-UQiaFHERhZut1syVLbIPt7AbJtMEfWzT4FzlP3AY90eTVlkjmtkXt4xfd1khudcCSuJaMtS92stCt674KJJ371r4M5Hm9DdY1rrZGN-TRtbZz3rb1eXRS6SbgxUGH0Wo6WY1n8fzp7n58M49NyngMIJEzLCtNsVBGqkRmMuWQSJGKrGLalKYSSguasFSojANmFZoSQCUJGGTDCPa3xrsQPFb5p7cf2m9zoHkPLe-h5T20_ABtt7nabywi_utLoZjk7BfTumoJ</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Zhao, Wenchao</creator><creator>Xu, Wenqing</creator><creator>Zhou, Quan</creator><creator>Zhang, Ziang</creator><creator>Lv, Peiyu</creator><creator>Qin, Xu</creator><creator>Yang, Limei</creator><creator>Gao, Xin</creator><creator>Pan, Gebo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-6013-8849</orcidid><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></search><sort><creationdate>20241119</creationdate><title>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</title><author>Zhao, Wenchao ; Xu, Wenqing ; Zhou, Quan ; Zhang, Ziang ; Lv, Peiyu ; Qin, Xu ; Yang, Limei ; Gao, Xin ; Pan, Gebo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-117e43edfa0eb8c782797641275659f3acdcf58a5023658941e9fecd118221ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitive pressure sensor</topic><topic>carbon nanotubes-based composite</topic><topic>Dielectric constant</topic><topic>Dielectric materials</topic><topic>Dielectrics</topic><topic>linear sensing</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Robot sensing systems</topic><topic>self-aggregation</topic><topic>Sensitivity</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Lv, Peiyu</creatorcontrib><creatorcontrib>Qin, Xu</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Wenchao</au><au>Xu, Wenqing</au><au>Zhou, Quan</au><au>Zhang, Ziang</au><au>Lv, Peiyu</au><au>Qin, Xu</au><au>Yang, Limei</au><au>Gao, Xin</au><au>Pan, Gebo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-11-19</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The capacity of flexible sensors to transform mechanical and chemical signals into electrical impulses has attracted much attention, exhibiting potential for various applications in human-machine interaction. Nonetheless, it remains challenging to maintain their high sensitivity over a wide operating range. Herein, we present an efficient strategy to expand the sensor's linear range at high sensitivity performance by using polyvinylidene fluoride (PVDF) in combination with thermoplastic polyurethane (TPU) with a moderate Young's modulus as a composite substrate for the sensitive layer. In addition, we filled the dielectric layer with carbon nanotubes (MWCNTs) to enhance the sensor's sensitivity. To better the carbon nanotubes' dispersion in polymer substrates, we also capped them using dopamine (DA), which can participate in a self-polymerization reaction. The sensitivity (1.21 kPa -1 ) of this capacitive pressure sensor (CPS) can be maintained over a wide pressure range (2-50 kPa), which far exceeds the linear detection range of the one-component substrate sensors (0-2 kPa), with a linearity of 0.995. Meanwhile, the CPS was characterized by fast response and recovery times (156/153 ms), low detection limit (100 Pa), and excellent cyclic stability (&gt;2000 cycles). Furthermore, the CPS was also tested for human physiological monitoring, confirming its potential for applications in wearable electronics and giving rise to ideas for developing tactile sensing features in intelligent robots.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3497311</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0009-6013-8849</orcidid><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-11, p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10758374
source IEEE Electronic Library (IEL)
subjects Capacitive pressure sensor
carbon nanotubes-based composite
Dielectric constant
Dielectric materials
Dielectrics
linear sensing
Nanocomposites
Polymers
Robot sensing systems
self-aggregation
Sensitivity
Sensor systems
Sensors
Substrates
title Highly Sensitive Flexible Sensor over a Wide Linear-Range Based on Carbon Nanotube towards Physiological Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive%20Flexible%20Sensor%20over%20a%20Wide%20Linear-Range%20Based%20on%20Carbon%20Nanotube%20towards%20Physiological%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhao,%20Wenchao&rft.date=2024-11-19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3497311&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3497311%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10758374&rfr_iscdi=true