Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model

The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-11, p.1-12
Hauptverfasser: Zhou, Peng, Zheng, Pai, Qi, Jiaming, Li, Chengxi, Lee, Hoi-Yin, Pan, Yipeng, Yang, Chenguang, Navarro-Alarcon, David, Pan, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE/ASME transactions on mechatronics
container_volume
creator Zhou, Peng
Zheng, Pai
Qi, Jiaming
Li, Chengxi
Lee, Hoi-Yin
Pan, Yipeng
Yang, Chenguang
Navarro-Alarcon, David
Pan, Jia
description The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.
doi_str_mv 10.1109/TMECH.2024.3485471
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10758319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10758319</ieee_id><sourcerecordid>10_1109_TMECH_2024_3485471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-a38e4b37ca2cb90b228e2cf5a303be206b7af07df8a9216fffc36b28964528d83</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EEqXwAojBL5DivyT2SEuhlVoYaCUmomvnugpKk8pOhr49KXRgume435HOR8g9ZxPOmXncrOezxUQwoSZS6VTl_IKMuFE8YVx9Xg6ZaZkoJdNrchPjN2NMccZH5Gta7aHpoabP6NuwB1sjncKOrqGpDn0NXdU2dBurZkeBfnShd10fMGl9smw6DBi74T1iSd-wD6eaYwP7ykW6bkusb8mVhzri3fmOyfZlvpktktX763L2tEocV6ZLQGpUVuYOhLOGWSE0CudTkExaFCyzOXiWl16DETzz3juZWaFNplKhSy3HRPz1utDGGNAXhzAMC8eCs-JkqPg1VJwMFWdDA_TwB1WI-A_IUy25kT9KUWOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Peng ; Zheng, Pai ; Qi, Jiaming ; Li, Chengxi ; Lee, Hoi-Yin ; Pan, Yipeng ; Yang, Chenguang ; Navarro-Alarcon, David ; Pan, Jia</creator><creatorcontrib>Zhou, Peng ; Zheng, Pai ; Qi, Jiaming ; Li, Chengxi ; Lee, Hoi-Yin ; Pan, Yipeng ; Yang, Chenguang ; Navarro-Alarcon, David ; Pan, Jia</creatorcontrib><description>The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3485471</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>bimanual manipulation ; Computational modeling ; Deformable models ; Deformable object manipulation (DOM) ; Fabrics ; Image reconstruction ; Manipulator dynamics ; neural dynamics model ; Point cloud compression ; Robots ; Solid modeling ; structure of interest (SOI) ; Surface reconstruction ; Surface treatment</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-11, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-2195-4339 ; 0000-0001-9003-2054 ; 0000-0002-3426-6638 ; 0000-0003-2655-6835 ; 0000-0001-5255-5559 ; 0000-0002-2329-8634 ; 0000-0002-7020-0943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10758319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10758319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zheng, Pai</creatorcontrib><creatorcontrib>Qi, Jiaming</creatorcontrib><creatorcontrib>Li, Chengxi</creatorcontrib><creatorcontrib>Lee, Hoi-Yin</creatorcontrib><creatorcontrib>Pan, Yipeng</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Navarro-Alarcon, David</creatorcontrib><creatorcontrib>Pan, Jia</creatorcontrib><title>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.</description><subject>bimanual manipulation</subject><subject>Computational modeling</subject><subject>Deformable models</subject><subject>Deformable object manipulation (DOM)</subject><subject>Fabrics</subject><subject>Image reconstruction</subject><subject>Manipulator dynamics</subject><subject>neural dynamics model</subject><subject>Point cloud compression</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>structure of interest (SOI)</subject><subject>Surface reconstruction</subject><subject>Surface treatment</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAUhS0EEqXwAojBL5DivyT2SEuhlVoYaCUmomvnugpKk8pOhr49KXRgume435HOR8g9ZxPOmXncrOezxUQwoSZS6VTl_IKMuFE8YVx9Xg6ZaZkoJdNrchPjN2NMccZH5Gta7aHpoabP6NuwB1sjncKOrqGpDn0NXdU2dBurZkeBfnShd10fMGl9smw6DBi74T1iSd-wD6eaYwP7ykW6bkusb8mVhzri3fmOyfZlvpktktX763L2tEocV6ZLQGpUVuYOhLOGWSE0CudTkExaFCyzOXiWl16DETzz3juZWaFNplKhSy3HRPz1utDGGNAXhzAMC8eCs-JkqPg1VJwMFWdDA_TwB1WI-A_IUy25kT9KUWOI</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Zhou, Peng</creator><creator>Zheng, Pai</creator><creator>Qi, Jiaming</creator><creator>Li, Chengxi</creator><creator>Lee, Hoi-Yin</creator><creator>Pan, Yipeng</creator><creator>Yang, Chenguang</creator><creator>Navarro-Alarcon, David</creator><creator>Pan, Jia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0007-2195-4339</orcidid><orcidid>https://orcid.org/0000-0001-9003-2054</orcidid><orcidid>https://orcid.org/0000-0002-3426-6638</orcidid><orcidid>https://orcid.org/0000-0003-2655-6835</orcidid><orcidid>https://orcid.org/0000-0001-5255-5559</orcidid><orcidid>https://orcid.org/0000-0002-2329-8634</orcidid><orcidid>https://orcid.org/0000-0002-7020-0943</orcidid></search><sort><creationdate>20241119</creationdate><title>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</title><author>Zhou, Peng ; Zheng, Pai ; Qi, Jiaming ; Li, Chengxi ; Lee, Hoi-Yin ; Pan, Yipeng ; Yang, Chenguang ; Navarro-Alarcon, David ; Pan, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-a38e4b37ca2cb90b228e2cf5a303be206b7af07df8a9216fffc36b28964528d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bimanual manipulation</topic><topic>Computational modeling</topic><topic>Deformable models</topic><topic>Deformable object manipulation (DOM)</topic><topic>Fabrics</topic><topic>Image reconstruction</topic><topic>Manipulator dynamics</topic><topic>neural dynamics model</topic><topic>Point cloud compression</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>structure of interest (SOI)</topic><topic>Surface reconstruction</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zheng, Pai</creatorcontrib><creatorcontrib>Qi, Jiaming</creatorcontrib><creatorcontrib>Li, Chengxi</creatorcontrib><creatorcontrib>Lee, Hoi-Yin</creatorcontrib><creatorcontrib>Pan, Yipeng</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Navarro-Alarcon, David</creatorcontrib><creatorcontrib>Pan, Jia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Peng</au><au>Zheng, Pai</au><au>Qi, Jiaming</au><au>Li, Chengxi</au><au>Lee, Hoi-Yin</au><au>Pan, Yipeng</au><au>Yang, Chenguang</au><au>Navarro-Alarcon, David</au><au>Pan, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-11-19</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2024.3485471</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-2195-4339</orcidid><orcidid>https://orcid.org/0000-0001-9003-2054</orcidid><orcidid>https://orcid.org/0000-0002-3426-6638</orcidid><orcidid>https://orcid.org/0000-0003-2655-6835</orcidid><orcidid>https://orcid.org/0000-0001-5255-5559</orcidid><orcidid>https://orcid.org/0000-0002-2329-8634</orcidid><orcidid>https://orcid.org/0000-0002-7020-0943</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-11, p.1-12
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_10758319
source IEEE Electronic Library (IEL)
subjects bimanual manipulation
Computational modeling
Deformable models
Deformable object manipulation (DOM)
Fabrics
Image reconstruction
Manipulator dynamics
neural dynamics model
Point cloud compression
Robots
Solid modeling
structure of interest (SOI)
Surface reconstruction
Surface treatment
title Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimanual%20Deformable%20Bag%20Manipulation%20Using%20a%20Structure-of-Interest%20Based%20Neural%20Dynamics%20Model&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhou,%20Peng&rft.date=2024-11-19&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3485471&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2024_3485471%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10758319&rfr_iscdi=true