Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model
The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-11, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | |
creator | Zhou, Peng Zheng, Pai Qi, Jiaming Li, Chengxi Lee, Hoi-Yin Pan, Yipeng Yang, Chenguang Navarro-Alarcon, David Pan, Jia |
description | The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements. |
doi_str_mv | 10.1109/TMECH.2024.3485471 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10758319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10758319</ieee_id><sourcerecordid>10_1109_TMECH_2024_3485471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-a38e4b37ca2cb90b228e2cf5a303be206b7af07df8a9216fffc36b28964528d83</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EEqXwAojBL5DivyT2SEuhlVoYaCUmomvnugpKk8pOhr49KXRgume435HOR8g9ZxPOmXncrOezxUQwoSZS6VTl_IKMuFE8YVx9Xg6ZaZkoJdNrchPjN2NMccZH5Gta7aHpoabP6NuwB1sjncKOrqGpDn0NXdU2dBurZkeBfnShd10fMGl9smw6DBi74T1iSd-wD6eaYwP7ykW6bkusb8mVhzri3fmOyfZlvpktktX763L2tEocV6ZLQGpUVuYOhLOGWSE0CudTkExaFCyzOXiWl16DETzz3juZWaFNplKhSy3HRPz1utDGGNAXhzAMC8eCs-JkqPg1VJwMFWdDA_TwB1WI-A_IUy25kT9KUWOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Peng ; Zheng, Pai ; Qi, Jiaming ; Li, Chengxi ; Lee, Hoi-Yin ; Pan, Yipeng ; Yang, Chenguang ; Navarro-Alarcon, David ; Pan, Jia</creator><creatorcontrib>Zhou, Peng ; Zheng, Pai ; Qi, Jiaming ; Li, Chengxi ; Lee, Hoi-Yin ; Pan, Yipeng ; Yang, Chenguang ; Navarro-Alarcon, David ; Pan, Jia</creatorcontrib><description>The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3485471</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>bimanual manipulation ; Computational modeling ; Deformable models ; Deformable object manipulation (DOM) ; Fabrics ; Image reconstruction ; Manipulator dynamics ; neural dynamics model ; Point cloud compression ; Robots ; Solid modeling ; structure of interest (SOI) ; Surface reconstruction ; Surface treatment</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-11, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-2195-4339 ; 0000-0001-9003-2054 ; 0000-0002-3426-6638 ; 0000-0003-2655-6835 ; 0000-0001-5255-5559 ; 0000-0002-2329-8634 ; 0000-0002-7020-0943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10758319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10758319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zheng, Pai</creatorcontrib><creatorcontrib>Qi, Jiaming</creatorcontrib><creatorcontrib>Li, Chengxi</creatorcontrib><creatorcontrib>Lee, Hoi-Yin</creatorcontrib><creatorcontrib>Pan, Yipeng</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Navarro-Alarcon, David</creatorcontrib><creatorcontrib>Pan, Jia</creatorcontrib><title>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.</description><subject>bimanual manipulation</subject><subject>Computational modeling</subject><subject>Deformable models</subject><subject>Deformable object manipulation (DOM)</subject><subject>Fabrics</subject><subject>Image reconstruction</subject><subject>Manipulator dynamics</subject><subject>neural dynamics model</subject><subject>Point cloud compression</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>structure of interest (SOI)</subject><subject>Surface reconstruction</subject><subject>Surface treatment</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAUhS0EEqXwAojBL5DivyT2SEuhlVoYaCUmomvnugpKk8pOhr49KXRgume435HOR8g9ZxPOmXncrOezxUQwoSZS6VTl_IKMuFE8YVx9Xg6ZaZkoJdNrchPjN2NMccZH5Gta7aHpoabP6NuwB1sjncKOrqGpDn0NXdU2dBurZkeBfnShd10fMGl9smw6DBi74T1iSd-wD6eaYwP7ykW6bkusb8mVhzri3fmOyfZlvpktktX763L2tEocV6ZLQGpUVuYOhLOGWSE0CudTkExaFCyzOXiWl16DETzz3juZWaFNplKhSy3HRPz1utDGGNAXhzAMC8eCs-JkqPg1VJwMFWdDA_TwB1WI-A_IUy25kT9KUWOI</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Zhou, Peng</creator><creator>Zheng, Pai</creator><creator>Qi, Jiaming</creator><creator>Li, Chengxi</creator><creator>Lee, Hoi-Yin</creator><creator>Pan, Yipeng</creator><creator>Yang, Chenguang</creator><creator>Navarro-Alarcon, David</creator><creator>Pan, Jia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0007-2195-4339</orcidid><orcidid>https://orcid.org/0000-0001-9003-2054</orcidid><orcidid>https://orcid.org/0000-0002-3426-6638</orcidid><orcidid>https://orcid.org/0000-0003-2655-6835</orcidid><orcidid>https://orcid.org/0000-0001-5255-5559</orcidid><orcidid>https://orcid.org/0000-0002-2329-8634</orcidid><orcidid>https://orcid.org/0000-0002-7020-0943</orcidid></search><sort><creationdate>20241119</creationdate><title>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</title><author>Zhou, Peng ; Zheng, Pai ; Qi, Jiaming ; Li, Chengxi ; Lee, Hoi-Yin ; Pan, Yipeng ; Yang, Chenguang ; Navarro-Alarcon, David ; Pan, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-a38e4b37ca2cb90b228e2cf5a303be206b7af07df8a9216fffc36b28964528d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bimanual manipulation</topic><topic>Computational modeling</topic><topic>Deformable models</topic><topic>Deformable object manipulation (DOM)</topic><topic>Fabrics</topic><topic>Image reconstruction</topic><topic>Manipulator dynamics</topic><topic>neural dynamics model</topic><topic>Point cloud compression</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>structure of interest (SOI)</topic><topic>Surface reconstruction</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zheng, Pai</creatorcontrib><creatorcontrib>Qi, Jiaming</creatorcontrib><creatorcontrib>Li, Chengxi</creatorcontrib><creatorcontrib>Lee, Hoi-Yin</creatorcontrib><creatorcontrib>Pan, Yipeng</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Navarro-Alarcon, David</creatorcontrib><creatorcontrib>Pan, Jia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Peng</au><au>Zheng, Pai</au><au>Qi, Jiaming</au><au>Li, Chengxi</au><au>Lee, Hoi-Yin</au><au>Pan, Yipeng</au><au>Yang, Chenguang</au><au>Navarro-Alarcon, David</au><au>Pan, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-11-19</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The manipulation of deformable objects by robotic systems presents significant challenges due to their complex dynamics and infinite-dimensional configuration spaces. This article introduces a novel approach to deformable object manipulation (DOM) by emphasizing the introduction and manipulation of structures of interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a graph neural network-based neural dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves global particle sampling process to construct a particle representation from partial point clouds of the SOIs and learning the neural dynamics model that effectively captures the essential deformations of the SOIs for fabric bags. By integrating this neural dynamics model with model predictive control, we enable robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We validate our new framework through various experiments that demonstrate its efficacy in manipulating deformable bags and T-shirts. Our contributions not only address the complexities inherent in DOM, but also provide new perspectives and methodologies for enhancing robotic interactions with deformable materials by concentrating on their critical structural elements.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2024.3485471</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-2195-4339</orcidid><orcidid>https://orcid.org/0000-0001-9003-2054</orcidid><orcidid>https://orcid.org/0000-0002-3426-6638</orcidid><orcidid>https://orcid.org/0000-0003-2655-6835</orcidid><orcidid>https://orcid.org/0000-0001-5255-5559</orcidid><orcidid>https://orcid.org/0000-0002-2329-8634</orcidid><orcidid>https://orcid.org/0000-0002-7020-0943</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-11, p.1-12 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_10758319 |
source | IEEE Electronic Library (IEL) |
subjects | bimanual manipulation Computational modeling Deformable models Deformable object manipulation (DOM) Fabrics Image reconstruction Manipulator dynamics neural dynamics model Point cloud compression Robots Solid modeling structure of interest (SOI) Surface reconstruction Surface treatment |
title | Bimanual Deformable Bag Manipulation Using a Structure-of-Interest Based Neural Dynamics Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimanual%20Deformable%20Bag%20Manipulation%20Using%20a%20Structure-of-Interest%20Based%20Neural%20Dynamics%20Model&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhou,%20Peng&rft.date=2024-11-19&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3485471&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2024_3485471%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10758319&rfr_iscdi=true |