LEO Internet Satellite Constellation Design for Regional Civil Aviation Airways With Multiple Repeat Ground Tracks

The lack of Internet access significantly impacts the passenger experience on commercial airlines, necessitating reliable, high- throughput communication support. One promising solution is leveraging the satellite constellation in low Earth orbit (LEO). This paper studies the design of an Internet s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-11, p.1-17
Hauptverfasser: Han, Peng, Li, Chuanjiang, Huang, Chao, Huang, Hailong, Guo, Yanning, Pan, Gaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title IEEE transactions on aerospace and electronic systems
container_volume
creator Han, Peng
Li, Chuanjiang
Huang, Chao
Huang, Hailong
Guo, Yanning
Pan, Gaofeng
description The lack of Internet access significantly impacts the passenger experience on commercial airlines, necessitating reliable, high- throughput communication support. One promising solution is leveraging the satellite constellation in low Earth orbit (LEO). This paper studies the design of an Internet satellite constellation in LEO for continuous communication coverage of regional airway targets. To address the problem, multiple repeat ground tracks (RGT) with the same period ratio are used as the reference. A mixed- integer simultaneous orbit optimization and satellite deployment model is established to minimize the number of satellites while satisfying the coverage requirement. A two-stage optimization framework is proposed to solve the problem with nonlinear and nonconvex constraints. In the first stage, differential evolution optimizes the parameters of each RGT orbit by minimizing the lower bound of the multi-RGT orbit satellite deployment model. By leveraging the result in the first stage, the access profile is obtained, and the optimal satellite deployment result is derived in the second stage. Finally, detailed validation and comparison simulations are conducted based on three case studies to verify the effectiveness and superiority of the proposed model and algorithm.
doi_str_mv 10.1109/TAES.2024.3502002
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10758208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10758208</ieee_id><sourcerecordid>10_1109_TAES_2024_3502002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638-9bd11d769308ae7ba8e27fe66501008941595c5380187a539df356dc4e42eed73</originalsourceid><addsrcrecordid>eNpNkN9KwzAUxoMoOKcPIHiRF-g8SZo2vSx1zsFk4Apelqw9ndHYjiRT9va2bBdenT983-E7P0LuGcwYg-yxzOebGQcez4QEDsAvyIRJmUZZAuKSTACYijIu2TW58f5zGGMViwlxq_maLruArsNANzqgtSYgLfrOj70Opu_oE3qz62jbO_qGu2GjLS3Mj7E0_zEnSW7crz56-m7CB3092GD2Fgf1HnWgC9cfuoaWTtdf_pZctdp6vDvXKSmf52XxEq3Wi2WRr6I6EUPWbcNYkyaZAKUx3WqFPG0xSSQwAJXFTGaylkINj6VaiqxphUyaOsaYIzapmBJ2Olu73nuHbbV35lu7Y8WgGplVI7NqZFadmQ2eh5PHIOI_fSoVByX-AM56aNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LEO Internet Satellite Constellation Design for Regional Civil Aviation Airways With Multiple Repeat Ground Tracks</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Peng ; Li, Chuanjiang ; Huang, Chao ; Huang, Hailong ; Guo, Yanning ; Pan, Gaofeng</creator><creatorcontrib>Han, Peng ; Li, Chuanjiang ; Huang, Chao ; Huang, Hailong ; Guo, Yanning ; Pan, Gaofeng</creatorcontrib><description>The lack of Internet access significantly impacts the passenger experience on commercial airlines, necessitating reliable, high- throughput communication support. One promising solution is leveraging the satellite constellation in low Earth orbit (LEO). This paper studies the design of an Internet satellite constellation in LEO for continuous communication coverage of regional airway targets. To address the problem, multiple repeat ground tracks (RGT) with the same period ratio are used as the reference. A mixed- integer simultaneous orbit optimization and satellite deployment model is established to minimize the number of satellites while satisfying the coverage requirement. A two-stage optimization framework is proposed to solve the problem with nonlinear and nonconvex constraints. In the first stage, differential evolution optimizes the parameters of each RGT orbit by minimizing the lower bound of the multi-RGT orbit satellite deployment model. By leveraging the result in the first stage, the access profile is obtained, and the optimal satellite deployment result is derived in the second stage. Finally, detailed validation and comparison simulations are conducted based on three case studies to verify the effectiveness and superiority of the proposed model and algorithm.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3502002</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace and electronic systems ; Atmospheric modeling ; Civil aviation airways ; Earth ; Internet ; low earth orbit ; Low earth orbit satellites ; Orbits ; Planetary orbits ; repeat ground track orbit ; satellite constellation design ; Satellite constellations ; Satellites ; Space vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-11, p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7994-0836 ; 0000-0003-0125-4048 ; 0000-0003-2667-6423 ; 0000-0001-6150-3646 ; 0000-0003-3023-4388 ; 0000-0003-1008-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10758208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10758208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Li, Chuanjiang</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Huang, Hailong</creatorcontrib><creatorcontrib>Guo, Yanning</creatorcontrib><creatorcontrib>Pan, Gaofeng</creatorcontrib><title>LEO Internet Satellite Constellation Design for Regional Civil Aviation Airways With Multiple Repeat Ground Tracks</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The lack of Internet access significantly impacts the passenger experience on commercial airlines, necessitating reliable, high- throughput communication support. One promising solution is leveraging the satellite constellation in low Earth orbit (LEO). This paper studies the design of an Internet satellite constellation in LEO for continuous communication coverage of regional airway targets. To address the problem, multiple repeat ground tracks (RGT) with the same period ratio are used as the reference. A mixed- integer simultaneous orbit optimization and satellite deployment model is established to minimize the number of satellites while satisfying the coverage requirement. A two-stage optimization framework is proposed to solve the problem with nonlinear and nonconvex constraints. In the first stage, differential evolution optimizes the parameters of each RGT orbit by minimizing the lower bound of the multi-RGT orbit satellite deployment model. By leveraging the result in the first stage, the access profile is obtained, and the optimal satellite deployment result is derived in the second stage. Finally, detailed validation and comparison simulations are conducted based on three case studies to verify the effectiveness and superiority of the proposed model and algorithm.</description><subject>Aerospace and electronic systems</subject><subject>Atmospheric modeling</subject><subject>Civil aviation airways</subject><subject>Earth</subject><subject>Internet</subject><subject>low earth orbit</subject><subject>Low earth orbit satellites</subject><subject>Orbits</subject><subject>Planetary orbits</subject><subject>repeat ground track orbit</subject><subject>satellite constellation design</subject><subject>Satellite constellations</subject><subject>Satellites</subject><subject>Space vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9KwzAUxoMoOKcPIHiRF-g8SZo2vSx1zsFk4Apelqw9ndHYjiRT9va2bBdenT983-E7P0LuGcwYg-yxzOebGQcez4QEDsAvyIRJmUZZAuKSTACYijIu2TW58f5zGGMViwlxq_maLruArsNANzqgtSYgLfrOj70Opu_oE3qz62jbO_qGu2GjLS3Mj7E0_zEnSW7crz56-m7CB3092GD2Fgf1HnWgC9cfuoaWTtdf_pZctdp6vDvXKSmf52XxEq3Wi2WRr6I6EUPWbcNYkyaZAKUx3WqFPG0xSSQwAJXFTGaylkINj6VaiqxphUyaOsaYIzapmBJ2Olu73nuHbbV35lu7Y8WgGplVI7NqZFadmQ2eh5PHIOI_fSoVByX-AM56aNs</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Han, Peng</creator><creator>Li, Chuanjiang</creator><creator>Huang, Chao</creator><creator>Huang, Hailong</creator><creator>Guo, Yanning</creator><creator>Pan, Gaofeng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7994-0836</orcidid><orcidid>https://orcid.org/0000-0003-0125-4048</orcidid><orcidid>https://orcid.org/0000-0003-2667-6423</orcidid><orcidid>https://orcid.org/0000-0001-6150-3646</orcidid><orcidid>https://orcid.org/0000-0003-3023-4388</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid></search><sort><creationdate>20241118</creationdate><title>LEO Internet Satellite Constellation Design for Regional Civil Aviation Airways With Multiple Repeat Ground Tracks</title><author>Han, Peng ; Li, Chuanjiang ; Huang, Chao ; Huang, Hailong ; Guo, Yanning ; Pan, Gaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638-9bd11d769308ae7ba8e27fe66501008941595c5380187a539df356dc4e42eed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace and electronic systems</topic><topic>Atmospheric modeling</topic><topic>Civil aviation airways</topic><topic>Earth</topic><topic>Internet</topic><topic>low earth orbit</topic><topic>Low earth orbit satellites</topic><topic>Orbits</topic><topic>Planetary orbits</topic><topic>repeat ground track orbit</topic><topic>satellite constellation design</topic><topic>Satellite constellations</topic><topic>Satellites</topic><topic>Space vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Li, Chuanjiang</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><creatorcontrib>Huang, Hailong</creatorcontrib><creatorcontrib>Guo, Yanning</creatorcontrib><creatorcontrib>Pan, Gaofeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Peng</au><au>Li, Chuanjiang</au><au>Huang, Chao</au><au>Huang, Hailong</au><au>Guo, Yanning</au><au>Pan, Gaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LEO Internet Satellite Constellation Design for Regional Civil Aviation Airways With Multiple Repeat Ground Tracks</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-11-18</date><risdate>2024</risdate><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The lack of Internet access significantly impacts the passenger experience on commercial airlines, necessitating reliable, high- throughput communication support. One promising solution is leveraging the satellite constellation in low Earth orbit (LEO). This paper studies the design of an Internet satellite constellation in LEO for continuous communication coverage of regional airway targets. To address the problem, multiple repeat ground tracks (RGT) with the same period ratio are used as the reference. A mixed- integer simultaneous orbit optimization and satellite deployment model is established to minimize the number of satellites while satisfying the coverage requirement. A two-stage optimization framework is proposed to solve the problem with nonlinear and nonconvex constraints. In the first stage, differential evolution optimizes the parameters of each RGT orbit by minimizing the lower bound of the multi-RGT orbit satellite deployment model. By leveraging the result in the first stage, the access profile is obtained, and the optimal satellite deployment result is derived in the second stage. Finally, detailed validation and comparison simulations are conducted based on three case studies to verify the effectiveness and superiority of the proposed model and algorithm.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3502002</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7994-0836</orcidid><orcidid>https://orcid.org/0000-0003-0125-4048</orcidid><orcidid>https://orcid.org/0000-0003-2667-6423</orcidid><orcidid>https://orcid.org/0000-0001-6150-3646</orcidid><orcidid>https://orcid.org/0000-0003-3023-4388</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-11, p.1-17
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_10758208
source IEEE Electronic Library (IEL)
subjects Aerospace and electronic systems
Atmospheric modeling
Civil aviation airways
Earth
Internet
low earth orbit
Low earth orbit satellites
Orbits
Planetary orbits
repeat ground track orbit
satellite constellation design
Satellite constellations
Satellites
Space vehicles
title LEO Internet Satellite Constellation Design for Regional Civil Aviation Airways With Multiple Repeat Ground Tracks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LEO%20Internet%20Satellite%20Constellation%20Design%20for%20Regional%20Civil%20Aviation%20Airways%20With%20Multiple%20Repeat%20Ground%20Tracks&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Han,%20Peng&rft.date=2024-11-18&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3502002&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3502002%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10758208&rfr_iscdi=true