Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation

Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2025-01, Vol.29 (1), p.90-94
Hauptverfasser: Nguyen, Loc X., Kim, Kitae, Lin Tun, Ye, Salman Hassan, Sheikh, Kyaw Tun, Yan, Han, Zhu, Seon Hong, Choong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 90
container_title IEEE communications letters
container_volume 29
creator Nguyen, Loc X.
Kim, Kitae
Lin Tun, Ye
Salman Hassan, Sheikh
Kyaw Tun, Yan
Han, Zhu
Seon Hong, Choong
description Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.
doi_str_mv 10.1109/LCOMM.2024.3499956
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10755087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10755087</ieee_id><sourcerecordid>3153921627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-16de94d21116ae6e18aa90b1018ceff36e915de75e2e1d233e9a110354c747673</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74qRpmiMqn6LTDmxHFIXWnTK16Ug6EPx6WrYDF9uH97Hlh5BLoDMAqm6KfDGfzxhlyYwnSimRHpEJCJHFbCjHw0wzFUupslNyFsKGUpoxARPyttj2trU_1q2j-a7pbbwK6KNXbI3rbRnlXdvunC1NbzsXfVoTLb1xoR4yBRrvRs64Knpx3VeD1RqjOxt62zR_wDk5qU0T8OLQp2T1cL_Mn-Ji8fic3xZxyRj0MaQVqqRiAJAaTBEyYxR9BwpZiXXNU1QgKpQCGULFOEdlhre5SEqZyFTyKbne79367mOHodebbufdcFJzEFwxSNmYYvtU6bsQPNZ6621r_LcGqkeN-k-jHjXqg8YButpDFhH_AVIImkn-C2vdb0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153921627</pqid></control><display><type>article</type><title>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</title><source>IEEE Xplore</source><creator>Nguyen, Loc X. ; Kim, Kitae ; Lin Tun, Ye ; Salman Hassan, Sheikh ; Kyaw Tun, Yan ; Han, Zhu ; Seon Hong, Choong</creator><creatorcontrib>Nguyen, Loc X. ; Kim, Kitae ; Lin Tun, Ye ; Salman Hassan, Sheikh ; Kyaw Tun, Yan ; Han, Zhu ; Seon Hong, Choong</creatorcontrib><description>Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3499956</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Computational modeling ; Decoding ; Image reconstruction ; joint source-channel coding ; knowledge distillation ; Knowledge management ; Learning ; Multiple users in SemCom ; Receivers ; Semantics ; Signal to noise ratio ; Training ; Transfer learning ; Transformers ; Wireless communication</subject><ispartof>IEEE communications letters, 2025-01, Vol.29 (1), p.90-94</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-16de94d21116ae6e18aa90b1018ceff36e915de75e2e1d233e9a110354c747673</cites><orcidid>0000-0002-5692-1189 ; 0000-0003-3484-7333 ; 0000-0002-6606-5822 ; 0000-0002-8557-0082 ; 0000-0001-5911-5847 ; 0000-0002-6955-1607 ; 0000-0002-5317-6494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10755087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10755087$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Loc X.</creatorcontrib><creatorcontrib>Kim, Kitae</creatorcontrib><creatorcontrib>Lin Tun, Ye</creatorcontrib><creatorcontrib>Salman Hassan, Sheikh</creatorcontrib><creatorcontrib>Kyaw Tun, Yan</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Seon Hong, Choong</creatorcontrib><title>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.</description><subject>Computation</subject><subject>Computational modeling</subject><subject>Decoding</subject><subject>Image reconstruction</subject><subject>joint source-channel coding</subject><subject>knowledge distillation</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Multiple users in SemCom</subject><subject>Receivers</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Transformers</subject><subject>Wireless communication</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74qRpmiMqn6LTDmxHFIXWnTK16Ug6EPx6WrYDF9uH97Hlh5BLoDMAqm6KfDGfzxhlyYwnSimRHpEJCJHFbCjHw0wzFUupslNyFsKGUpoxARPyttj2trU_1q2j-a7pbbwK6KNXbI3rbRnlXdvunC1NbzsXfVoTLb1xoR4yBRrvRs64Knpx3VeD1RqjOxt62zR_wDk5qU0T8OLQp2T1cL_Mn-Ji8fic3xZxyRj0MaQVqqRiAJAaTBEyYxR9BwpZiXXNU1QgKpQCGULFOEdlhre5SEqZyFTyKbne79367mOHodebbufdcFJzEFwxSNmYYvtU6bsQPNZ6621r_LcGqkeN-k-jHjXqg8YButpDFhH_AVIImkn-C2vdb0A</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Nguyen, Loc X.</creator><creator>Kim, Kitae</creator><creator>Lin Tun, Ye</creator><creator>Salman Hassan, Sheikh</creator><creator>Kyaw Tun, Yan</creator><creator>Han, Zhu</creator><creator>Seon Hong, Choong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5692-1189</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-8557-0082</orcidid><orcidid>https://orcid.org/0000-0001-5911-5847</orcidid><orcidid>https://orcid.org/0000-0002-6955-1607</orcidid><orcidid>https://orcid.org/0000-0002-5317-6494</orcidid></search><sort><creationdate>202501</creationdate><title>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</title><author>Nguyen, Loc X. ; Kim, Kitae ; Lin Tun, Ye ; Salman Hassan, Sheikh ; Kyaw Tun, Yan ; Han, Zhu ; Seon Hong, Choong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-16de94d21116ae6e18aa90b1018ceff36e915de75e2e1d233e9a110354c747673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computation</topic><topic>Computational modeling</topic><topic>Decoding</topic><topic>Image reconstruction</topic><topic>joint source-channel coding</topic><topic>knowledge distillation</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Multiple users in SemCom</topic><topic>Receivers</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Transformers</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Loc X.</creatorcontrib><creatorcontrib>Kim, Kitae</creatorcontrib><creatorcontrib>Lin Tun, Ye</creatorcontrib><creatorcontrib>Salman Hassan, Sheikh</creatorcontrib><creatorcontrib>Kyaw Tun, Yan</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Seon Hong, Choong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Loc X.</au><au>Kim, Kitae</au><au>Lin Tun, Ye</au><au>Salman Hassan, Sheikh</au><au>Kyaw Tun, Yan</au><au>Han, Zhu</au><au>Seon Hong, Choong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2025-01</date><risdate>2025</risdate><volume>29</volume><issue>1</issue><spage>90</spage><epage>94</epage><pages>90-94</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3499956</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5692-1189</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-8557-0082</orcidid><orcidid>https://orcid.org/0000-0001-5911-5847</orcidid><orcidid>https://orcid.org/0000-0002-6955-1607</orcidid><orcidid>https://orcid.org/0000-0002-5317-6494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2025-01, Vol.29 (1), p.90-94
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_10755087
source IEEE Xplore
subjects Computation
Computational modeling
Decoding
Image reconstruction
joint source-channel coding
knowledge distillation
Knowledge management
Learning
Multiple users in SemCom
Receivers
Semantics
Signal to noise ratio
Training
Transfer learning
Transformers
Wireless communication
title Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Multi-User%20Semantic%20Communication%20via%20Transfer%20Learning%20and%20Knowledge%20Distillation&rft.jtitle=IEEE%20communications%20letters&rft.au=Nguyen,%20Loc%20X.&rft.date=2025-01&rft.volume=29&rft.issue=1&rft.spage=90&rft.epage=94&rft.pages=90-94&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3499956&rft_dat=%3Cproquest_RIE%3E3153921627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153921627&rft_id=info:pmid/&rft_ieee_id=10755087&rfr_iscdi=true