Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation
Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios a...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2025-01, Vol.29 (1), p.90-94 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | IEEE communications letters |
container_volume | 29 |
creator | Nguyen, Loc X. Kim, Kitae Lin Tun, Ye Salman Hassan, Sheikh Kyaw Tun, Yan Han, Zhu Seon Hong, Choong |
description | Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods. |
doi_str_mv | 10.1109/LCOMM.2024.3499956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10755087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10755087</ieee_id><sourcerecordid>3153921627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-16de94d21116ae6e18aa90b1018ceff36e915de75e2e1d233e9a110354c747673</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74qRpmiMqn6LTDmxHFIXWnTK16Ug6EPx6WrYDF9uH97Hlh5BLoDMAqm6KfDGfzxhlyYwnSimRHpEJCJHFbCjHw0wzFUupslNyFsKGUpoxARPyttj2trU_1q2j-a7pbbwK6KNXbI3rbRnlXdvunC1NbzsXfVoTLb1xoR4yBRrvRs64Knpx3VeD1RqjOxt62zR_wDk5qU0T8OLQp2T1cL_Mn-Ji8fic3xZxyRj0MaQVqqRiAJAaTBEyYxR9BwpZiXXNU1QgKpQCGULFOEdlhre5SEqZyFTyKbne79367mOHodebbufdcFJzEFwxSNmYYvtU6bsQPNZ6621r_LcGqkeN-k-jHjXqg8YButpDFhH_AVIImkn-C2vdb0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153921627</pqid></control><display><type>article</type><title>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</title><source>IEEE Xplore</source><creator>Nguyen, Loc X. ; Kim, Kitae ; Lin Tun, Ye ; Salman Hassan, Sheikh ; Kyaw Tun, Yan ; Han, Zhu ; Seon Hong, Choong</creator><creatorcontrib>Nguyen, Loc X. ; Kim, Kitae ; Lin Tun, Ye ; Salman Hassan, Sheikh ; Kyaw Tun, Yan ; Han, Zhu ; Seon Hong, Choong</creatorcontrib><description>Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3499956</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Computational modeling ; Decoding ; Image reconstruction ; joint source-channel coding ; knowledge distillation ; Knowledge management ; Learning ; Multiple users in SemCom ; Receivers ; Semantics ; Signal to noise ratio ; Training ; Transfer learning ; Transformers ; Wireless communication</subject><ispartof>IEEE communications letters, 2025-01, Vol.29 (1), p.90-94</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-16de94d21116ae6e18aa90b1018ceff36e915de75e2e1d233e9a110354c747673</cites><orcidid>0000-0002-5692-1189 ; 0000-0003-3484-7333 ; 0000-0002-6606-5822 ; 0000-0002-8557-0082 ; 0000-0001-5911-5847 ; 0000-0002-6955-1607 ; 0000-0002-5317-6494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10755087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10755087$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Loc X.</creatorcontrib><creatorcontrib>Kim, Kitae</creatorcontrib><creatorcontrib>Lin Tun, Ye</creatorcontrib><creatorcontrib>Salman Hassan, Sheikh</creatorcontrib><creatorcontrib>Kyaw Tun, Yan</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Seon Hong, Choong</creatorcontrib><title>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.</description><subject>Computation</subject><subject>Computational modeling</subject><subject>Decoding</subject><subject>Image reconstruction</subject><subject>joint source-channel coding</subject><subject>knowledge distillation</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Multiple users in SemCom</subject><subject>Receivers</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Transformers</subject><subject>Wireless communication</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwBxCHSpw74qRpmiMqn6LTDmxHFIXWnTK16Ug6EPx6WrYDF9uH97Hlh5BLoDMAqm6KfDGfzxhlyYwnSimRHpEJCJHFbCjHw0wzFUupslNyFsKGUpoxARPyttj2trU_1q2j-a7pbbwK6KNXbI3rbRnlXdvunC1NbzsXfVoTLb1xoR4yBRrvRs64Knpx3VeD1RqjOxt62zR_wDk5qU0T8OLQp2T1cL_Mn-Ji8fic3xZxyRj0MaQVqqRiAJAaTBEyYxR9BwpZiXXNU1QgKpQCGULFOEdlhre5SEqZyFTyKbne79367mOHodebbufdcFJzEFwxSNmYYvtU6bsQPNZ6621r_LcGqkeN-k-jHjXqg8YButpDFhH_AVIImkn-C2vdb0A</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Nguyen, Loc X.</creator><creator>Kim, Kitae</creator><creator>Lin Tun, Ye</creator><creator>Salman Hassan, Sheikh</creator><creator>Kyaw Tun, Yan</creator><creator>Han, Zhu</creator><creator>Seon Hong, Choong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5692-1189</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-8557-0082</orcidid><orcidid>https://orcid.org/0000-0001-5911-5847</orcidid><orcidid>https://orcid.org/0000-0002-6955-1607</orcidid><orcidid>https://orcid.org/0000-0002-5317-6494</orcidid></search><sort><creationdate>202501</creationdate><title>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</title><author>Nguyen, Loc X. ; Kim, Kitae ; Lin Tun, Ye ; Salman Hassan, Sheikh ; Kyaw Tun, Yan ; Han, Zhu ; Seon Hong, Choong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-16de94d21116ae6e18aa90b1018ceff36e915de75e2e1d233e9a110354c747673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computation</topic><topic>Computational modeling</topic><topic>Decoding</topic><topic>Image reconstruction</topic><topic>joint source-channel coding</topic><topic>knowledge distillation</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Multiple users in SemCom</topic><topic>Receivers</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Transformers</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Loc X.</creatorcontrib><creatorcontrib>Kim, Kitae</creatorcontrib><creatorcontrib>Lin Tun, Ye</creatorcontrib><creatorcontrib>Salman Hassan, Sheikh</creatorcontrib><creatorcontrib>Kyaw Tun, Yan</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Seon Hong, Choong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Loc X.</au><au>Kim, Kitae</au><au>Lin Tun, Ye</au><au>Salman Hassan, Sheikh</au><au>Kyaw Tun, Yan</au><au>Han, Zhu</au><au>Seon Hong, Choong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2025-01</date><risdate>2025</risdate><volume>29</volume><issue>1</issue><spage>90</spage><epage>94</epage><pages>90-94</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Semantic Communication (SemCom), notable for ensuring quality of service by jointly optimizing source and channel coding, effectively extracts data semantics, eliminates redundant information, and mitigates noise effects from wireless channel. However, most studies overlook multiple user scenarios and resource availability, limiting real-world applications. This letter addresses this gap by focusing on downlink communication from a base station to multiple users with varying computing capacities. Users employ variants of Swin transformer models for source decoding and a simple architecture for channel decoding. We propose a novel training procedure FRENCA, incorporating transfer learning and knowledge distillation to improve low-computing users' performance. Extensive simulations validate the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3499956</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5692-1189</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-8557-0082</orcidid><orcidid>https://orcid.org/0000-0001-5911-5847</orcidid><orcidid>https://orcid.org/0000-0002-6955-1607</orcidid><orcidid>https://orcid.org/0000-0002-5317-6494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2025-01, Vol.29 (1), p.90-94 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_10755087 |
source | IEEE Xplore |
subjects | Computation Computational modeling Decoding Image reconstruction joint source-channel coding knowledge distillation Knowledge management Learning Multiple users in SemCom Receivers Semantics Signal to noise ratio Training Transfer learning Transformers Wireless communication |
title | Optimizing Multi-User Semantic Communication via Transfer Learning and Knowledge Distillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Multi-User%20Semantic%20Communication%20via%20Transfer%20Learning%20and%20Knowledge%20Distillation&rft.jtitle=IEEE%20communications%20letters&rft.au=Nguyen,%20Loc%20X.&rft.date=2025-01&rft.volume=29&rft.issue=1&rft.spage=90&rft.epage=94&rft.pages=90-94&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3499956&rft_dat=%3Cproquest_RIE%3E3153921627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153921627&rft_id=info:pmid/&rft_ieee_id=10755087&rfr_iscdi=true |