Concurrent Learning-Based Adaptive Critic Formation for Multi-robots under Safety Constraints
This article presents a concurrent learning-based adaptive critic formation for multi-robots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. Firstly, based on directed graph communication, an initial formation consensus it...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | |
creator | Cheng, Yunjie Shao, Xingling Li, Jiangmiao Liu, Jun Zhang, Qingzhen |
description | This article presents a concurrent learning-based adaptive critic formation for multi-robots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. Firstly, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic poli-cy is developed that enables robots to preserve formation config-uration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety con-straints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into uncon-strained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic pro-gramming, improving the weight convergence without demand-ing the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computa-tionally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on two-dimensional and three-dimensional multi-robots. |
doi_str_mv | 10.1109/JIOT.2024.3497979 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10753353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10753353</ieee_id><sourcerecordid>10_1109_JIOT_2024_3497979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633-51abfe982de34387f0ba861bd419142ed327dc3535da7880e53c937be898dce33</originalsourceid><addsrcrecordid>eNpNkM9KAzEQh4MoWGofQPCQF9iaZPZPcqyL1UqlB3uVJZvMSqTdlCQr9O3d0h7KHGYO8_1m-Ah55GzOOVPPH6vNdi6YyOeQq2qsGzIRIKosL0txezXfk1mMv4yxESu4Kifku_a9GULAPtE16tC7_id70REtXVh9SO4PaR1ccoYufdjr5HxPOx_o57BLLgu-9SnSobcY6JfuMB3pmBhT0K5P8YHcdXoXcXbpU7Jdvm7r92y9eVvVi3VmSoCs4LrtUElhEXKQVcdaLUve2pwrngu04_vWQAGF1ZWUDAswCqoWpZLWIMCU8HOsCT7GgF1zCG6vw7HhrDkZak6GmpOh5mJoZJ7OjEPEq_2qgPES_AP_J2Ns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concurrent Learning-Based Adaptive Critic Formation for Multi-robots under Safety Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Yunjie ; Shao, Xingling ; Li, Jiangmiao ; Liu, Jun ; Zhang, Qingzhen</creator><creatorcontrib>Cheng, Yunjie ; Shao, Xingling ; Li, Jiangmiao ; Liu, Jun ; Zhang, Qingzhen</creatorcontrib><description>This article presents a concurrent learning-based adaptive critic formation for multi-robots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. Firstly, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic poli-cy is developed that enables robots to preserve formation config-uration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety con-straints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into uncon-strained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic pro-gramming, improving the weight convergence without demand-ing the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computa-tionally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on two-dimensional and three-dimensional multi-robots.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3497979</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive critic formation ; Artificial neural networks ; Collision avoidance ; Concurrent learning ; Convergence ; Formation control ; Instruments ; Internet of Things ; Multi-robots ; Optimal control ; Robot kinematics ; Safety ; Safety constraints ; Vectors</subject><ispartof>IEEE internet of things journal, 2024-11, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-2357-3749 ; 0000-0002-1128-8201 ; 0000-0002-6187-4575 ; 0000-0002-7968-3523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10753353$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10753353$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Yunjie</creatorcontrib><creatorcontrib>Shao, Xingling</creatorcontrib><creatorcontrib>Li, Jiangmiao</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Zhang, Qingzhen</creatorcontrib><title>Concurrent Learning-Based Adaptive Critic Formation for Multi-robots under Safety Constraints</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This article presents a concurrent learning-based adaptive critic formation for multi-robots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. Firstly, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic poli-cy is developed that enables robots to preserve formation config-uration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety con-straints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into uncon-strained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic pro-gramming, improving the weight convergence without demand-ing the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computa-tionally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on two-dimensional and three-dimensional multi-robots.</description><subject>Adaptive critic formation</subject><subject>Artificial neural networks</subject><subject>Collision avoidance</subject><subject>Concurrent learning</subject><subject>Convergence</subject><subject>Formation control</subject><subject>Instruments</subject><subject>Internet of Things</subject><subject>Multi-robots</subject><subject>Optimal control</subject><subject>Robot kinematics</subject><subject>Safety</subject><subject>Safety constraints</subject><subject>Vectors</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KAzEQh4MoWGofQPCQF9iaZPZPcqyL1UqlB3uVJZvMSqTdlCQr9O3d0h7KHGYO8_1m-Ah55GzOOVPPH6vNdi6YyOeQq2qsGzIRIKosL0txezXfk1mMv4yxESu4Kifku_a9GULAPtE16tC7_id70REtXVh9SO4PaR1ccoYufdjr5HxPOx_o57BLLgu-9SnSobcY6JfuMB3pmBhT0K5P8YHcdXoXcXbpU7Jdvm7r92y9eVvVi3VmSoCs4LrtUElhEXKQVcdaLUve2pwrngu04_vWQAGF1ZWUDAswCqoWpZLWIMCU8HOsCT7GgF1zCG6vw7HhrDkZak6GmpOh5mJoZJ7OjEPEq_2qgPES_AP_J2Ns</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Cheng, Yunjie</creator><creator>Shao, Xingling</creator><creator>Li, Jiangmiao</creator><creator>Liu, Jun</creator><creator>Zhang, Qingzhen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-2357-3749</orcidid><orcidid>https://orcid.org/0000-0002-1128-8201</orcidid><orcidid>https://orcid.org/0000-0002-6187-4575</orcidid><orcidid>https://orcid.org/0000-0002-7968-3523</orcidid></search><sort><creationdate>20241113</creationdate><title>Concurrent Learning-Based Adaptive Critic Formation for Multi-robots under Safety Constraints</title><author>Cheng, Yunjie ; Shao, Xingling ; Li, Jiangmiao ; Liu, Jun ; Zhang, Qingzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633-51abfe982de34387f0ba861bd419142ed327dc3535da7880e53c937be898dce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive critic formation</topic><topic>Artificial neural networks</topic><topic>Collision avoidance</topic><topic>Concurrent learning</topic><topic>Convergence</topic><topic>Formation control</topic><topic>Instruments</topic><topic>Internet of Things</topic><topic>Multi-robots</topic><topic>Optimal control</topic><topic>Robot kinematics</topic><topic>Safety</topic><topic>Safety constraints</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yunjie</creatorcontrib><creatorcontrib>Shao, Xingling</creatorcontrib><creatorcontrib>Li, Jiangmiao</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Zhang, Qingzhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Yunjie</au><au>Shao, Xingling</au><au>Li, Jiangmiao</au><au>Liu, Jun</au><au>Zhang, Qingzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrent Learning-Based Adaptive Critic Formation for Multi-robots under Safety Constraints</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-11-13</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This article presents a concurrent learning-based adaptive critic formation for multi-robots under safety constraints, which comprises of an initial formation consensus item and a collision-free adaptive critic policy. Firstly, based on directed graph communication, an initial formation consensus item is designed to maintain the velocity agreement under a leader-follower setting. Particularly, a collision-free adaptive critic poli-cy is developed that enables robots to preserve formation config-uration with the minimum cost while excluding collisions caused by inter-robots and static/moving obstacles, wherein safety con-straints encoded by an elegantly devised penalty function are enforced by converting constrained optimal control into uncon-strained optimal control issue. Furthermore, by revisiting real-time and historical information, a concurrent weight learning rule is elaborated under a critic-only adaptive dynamic pro-gramming, improving the weight convergence without demand-ing the persistence excitation conditions. The remarkable benefits outperforming existing outcomes are safety-critical coordination with energy-saving performances is assured under a computa-tionally efficient optimal learning paradigm. Involved errors are theoretically proved to be convergent. Finally, the values and superiorities are verified through extensive simulations on two-dimensional and three-dimensional multi-robots.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3497979</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0004-2357-3749</orcidid><orcidid>https://orcid.org/0000-0002-1128-8201</orcidid><orcidid>https://orcid.org/0000-0002-6187-4575</orcidid><orcidid>https://orcid.org/0000-0002-7968-3523</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-11, p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10753353 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive critic formation Artificial neural networks Collision avoidance Concurrent learning Convergence Formation control Instruments Internet of Things Multi-robots Optimal control Robot kinematics Safety Safety constraints Vectors |
title | Concurrent Learning-Based Adaptive Critic Formation for Multi-robots under Safety Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrent%20Learning-Based%20Adaptive%20Critic%20Formation%20for%20Multi-robots%20under%20Safety%20Constraints&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cheng,%20Yunjie&rft.date=2024-11-13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3497979&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2024_3497979%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10753353&rfr_iscdi=true |