YOLO-TS: A Lightweight YOLO Model for Traffic Sign Detection

Existing traffic sign detection algorithms suffer from high computational complexity and large parameter sizes, limiting their deployability. The YOLO-TS model integrates the Normalized Wasserstein Distance (NWD) with the Complete Intersection over Union (CIoU) loss function, significantly enhancing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.169013-169023
Hauptverfasser: Liu, Yunxiang, Luo, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169023
container_issue
container_start_page 169013
container_title IEEE access
container_volume 12
creator Liu, Yunxiang
Luo, Peng
description Existing traffic sign detection algorithms suffer from high computational complexity and large parameter sizes, limiting their deployability. The YOLO-TS model integrates the Normalized Wasserstein Distance (NWD) with the Complete Intersection over Union (CIoU) loss function, significantly enhancing the detection of small traffic signs. The integration of StarBlock from StarNet into the C2f module forms the C2f-Star configuration, which simplifies the architecture. In addition, the Slimneck design paradigm is introduced into the neck network to further reduce computational demands while maintaining model accuracy. Subsequently, a Squeeze and Excitations Shared Detection Head (SESDH) is developed to integrate a squeezing and excitation attention mechanism. This design helps diminish the intricacy of the network architecture, increase attention on areas where traffic signs are presence and improve the ability of the model to indicate objects in complex surroundings. Experimental results on the CCTSDB traffic sign dataset reveal that the updated algorithm decreased the number of parameters by 35.33%, reduced the computation by 35.80% and shrunk the model size by 32.94% of the baseline YOLOv8n model while improving the mAP@50 by 1%, and the F1 score by 1.32%. Compared to other algorithms, here, a good balance between accuracy and lightweight design is achieved.
doi_str_mv 10.1109/ACCESS.2024.3498057
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10752953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10752953</ieee_id><doaj_id>oai_doaj_org_article_80cb1f747bd94a288ce70e0deadf8768</doaj_id><sourcerecordid>oai_doaj_org_article_80cb1f747bd94a288ce70e0deadf8768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-f5591aa5bededce4468b5d84784e46632f9cf6b837bfc0c129a8a1cd4366289a3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gV70D3Qmzbd4M-bXoLKLzguvQpqczIy5SloQ_72tHbJzkRNeeJ8DD0LXBM8Jwfp2sVw-VtW8wAWbU6YV5vIMTQoidE45Fecn_0s0a9sd7kf1EZcTdP--Ltf5prrLFlkZtx_dNwxvNsTZa-Nhn4UmZZtkQ4guq-L2kD1AB66LzeEKXQS7b2F23FP09vS4Wb7k5fp5tVyUuesvd3ngXBNreQ0evAPGhKq5V0wqBkwIWgTtgqgVlXVw2JFCW2WJ84wKUSht6RStRq5v7M58pfhp049pbDR_QZO2xqYuuj0YhV1NgmSy9prZQikHEgP2YH1QUqieRUeWS03bJgj_PILN4NOMPs3g0xx99q2bsRUB4KQheaE5pb9FYG_V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>YOLO-TS: A Lightweight YOLO Model for Traffic Sign Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Yunxiang ; Luo, Peng</creator><creatorcontrib>Liu, Yunxiang ; Luo, Peng</creatorcontrib><description>Existing traffic sign detection algorithms suffer from high computational complexity and large parameter sizes, limiting their deployability. The YOLO-TS model integrates the Normalized Wasserstein Distance (NWD) with the Complete Intersection over Union (CIoU) loss function, significantly enhancing the detection of small traffic signs. The integration of StarBlock from StarNet into the C2f module forms the C2f-Star configuration, which simplifies the architecture. In addition, the Slimneck design paradigm is introduced into the neck network to further reduce computational demands while maintaining model accuracy. Subsequently, a Squeeze and Excitations Shared Detection Head (SESDH) is developed to integrate a squeezing and excitation attention mechanism. This design helps diminish the intricacy of the network architecture, increase attention on areas where traffic signs are presence and improve the ability of the model to indicate objects in complex surroundings. Experimental results on the CCTSDB traffic sign dataset reveal that the updated algorithm decreased the number of parameters by 35.33%, reduced the computation by 35.80% and shrunk the model size by 32.94% of the baseline YOLOv8n model while improving the mAP@50 by 1%, and the F1 score by 1.32%. Compared to other algorithms, here, a good balance between accuracy and lightweight design is achieved.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3498057</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention mechanisms ; lightweight structures ; traffic sign detection ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.169013-169023</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-2639-6452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10752953$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Yunxiang</creatorcontrib><creatorcontrib>Luo, Peng</creatorcontrib><title>YOLO-TS: A Lightweight YOLO Model for Traffic Sign Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>Existing traffic sign detection algorithms suffer from high computational complexity and large parameter sizes, limiting their deployability. The YOLO-TS model integrates the Normalized Wasserstein Distance (NWD) with the Complete Intersection over Union (CIoU) loss function, significantly enhancing the detection of small traffic signs. The integration of StarBlock from StarNet into the C2f module forms the C2f-Star configuration, which simplifies the architecture. In addition, the Slimneck design paradigm is introduced into the neck network to further reduce computational demands while maintaining model accuracy. Subsequently, a Squeeze and Excitations Shared Detection Head (SESDH) is developed to integrate a squeezing and excitation attention mechanism. This design helps diminish the intricacy of the network architecture, increase attention on areas where traffic signs are presence and improve the ability of the model to indicate objects in complex surroundings. Experimental results on the CCTSDB traffic sign dataset reveal that the updated algorithm decreased the number of parameters by 35.33%, reduced the computation by 35.80% and shrunk the model size by 32.94% of the baseline YOLOv8n model while improving the mAP@50 by 1%, and the F1 score by 1.32%. Compared to other algorithms, here, a good balance between accuracy and lightweight design is achieved.</description><subject>Attention mechanisms</subject><subject>lightweight structures</subject><subject>traffic sign detection</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gV70D3Qmzbd4M-bXoLKLzguvQpqczIy5SloQ_72tHbJzkRNeeJ8DD0LXBM8Jwfp2sVw-VtW8wAWbU6YV5vIMTQoidE45Fecn_0s0a9sd7kf1EZcTdP--Ltf5prrLFlkZtx_dNwxvNsTZa-Nhn4UmZZtkQ4guq-L2kD1AB66LzeEKXQS7b2F23FP09vS4Wb7k5fp5tVyUuesvd3ngXBNreQ0evAPGhKq5V0wqBkwIWgTtgqgVlXVw2JFCW2WJ84wKUSht6RStRq5v7M58pfhp049pbDR_QZO2xqYuuj0YhV1NgmSy9prZQikHEgP2YH1QUqieRUeWS03bJgj_PILN4NOMPs3g0xx99q2bsRUB4KQheaE5pb9FYG_V</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Yunxiang</creator><creator>Luo, Peng</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-2639-6452</orcidid></search><sort><creationdate>2024</creationdate><title>YOLO-TS: A Lightweight YOLO Model for Traffic Sign Detection</title><author>Liu, Yunxiang ; Luo, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-f5591aa5bededce4468b5d84784e46632f9cf6b837bfc0c129a8a1cd4366289a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention mechanisms</topic><topic>lightweight structures</topic><topic>traffic sign detection</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunxiang</creatorcontrib><creatorcontrib>Luo, Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yunxiang</au><au>Luo, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>YOLO-TS: A Lightweight YOLO Model for Traffic Sign Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>169013</spage><epage>169023</epage><pages>169013-169023</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Existing traffic sign detection algorithms suffer from high computational complexity and large parameter sizes, limiting their deployability. The YOLO-TS model integrates the Normalized Wasserstein Distance (NWD) with the Complete Intersection over Union (CIoU) loss function, significantly enhancing the detection of small traffic signs. The integration of StarBlock from StarNet into the C2f module forms the C2f-Star configuration, which simplifies the architecture. In addition, the Slimneck design paradigm is introduced into the neck network to further reduce computational demands while maintaining model accuracy. Subsequently, a Squeeze and Excitations Shared Detection Head (SESDH) is developed to integrate a squeezing and excitation attention mechanism. This design helps diminish the intricacy of the network architecture, increase attention on areas where traffic signs are presence and improve the ability of the model to indicate objects in complex surroundings. Experimental results on the CCTSDB traffic sign dataset reveal that the updated algorithm decreased the number of parameters by 35.33%, reduced the computation by 35.80% and shrunk the model size by 32.94% of the baseline YOLOv8n model while improving the mAP@50 by 1%, and the F1 score by 1.32%. Compared to other algorithms, here, a good balance between accuracy and lightweight design is achieved.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3498057</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0007-2639-6452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.169013-169023
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10752953
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Attention mechanisms
lightweight structures
traffic sign detection
YOLO
title YOLO-TS: A Lightweight YOLO Model for Traffic Sign Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=YOLO-TS:%20A%20Lightweight%20YOLO%20Model%20for%20Traffic%20Sign%20Detection&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yunxiang&rft.date=2024&rft.volume=12&rft.spage=169013&rft.epage=169023&rft.pages=169013-169023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3498057&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_80cb1f747bd94a288ce70e0deadf8768%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10752953&rft_doaj_id=oai_doaj_org_article_80cb1f747bd94a288ce70e0deadf8768&rfr_iscdi=true