A Multimodal Metameric Earthworm-Like Robot for Locomotion in Multiterrain Environments

In this research, we introduce a novel multimodal locomotion robot by integrating foldable wheeled structures with antagonistically deformable worm-like structures. This design reconciles the inherent challenges faced by conventional worm-like and wheeled robots. Our robot showcases two locomotion m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-11, p.1-12
Hauptverfasser: He, Zihan, Zhang, Qiwei, Bi, Zhihai, Fang, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE/ASME transactions on mechatronics
container_volume
creator He, Zihan
Zhang, Qiwei
Bi, Zhihai
Fang, Hongbin
description In this research, we introduce a novel multimodal locomotion robot by integrating foldable wheeled structures with antagonistically deformable worm-like structures. This design reconciles the inherent challenges faced by conventional worm-like and wheeled robots. Our robot showcases two locomotion modes and five distinct motion types: worm-like rectilinear, sidewinding, circular crawling, rectilinear rolling, and spot turning. This versatility enables the robot to adapt to diverse environments and tasks. We have developed kinematic models for both crawling and rolling locomotion modes. By correlating these models with gait and control signals, we can qualitatively predict the characteristics of robot trajectories and locomotion performance indexes, underscoring the key role of kinematic models in locomotion. Furthermore, we experimentally demonstrate the robot's multiterrain adaptability. The robot adeptly navigates horizontal, curved, and vertical industrial pipes, along with narrow sewers, utilizing the worm-like crawling mode. Moreover, it efficiently traverses open terrains, including carpeted floors, mossy ground, gravel paths, grassland, steps, asphalt pavement, and uphill, employing the rolling mode. Impressively, the robot swiftly readjusts its posture after descending steps and promptly reorients itself through spot turns, showcasing its agility. This work highlights the advantages of combining multiple motion modalities and integrating structural and control signals, providing valuable insights for the advancement of future bionic and multimodal robots.
doi_str_mv 10.1109/TMECH.2024.3490795
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10752425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10752425</ieee_id><sourcerecordid>10_1109_TMECH_2024_3490795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-efd5f79ecdadbd3131497f1d1a4483341610a5a135c94259d7ffe260ee1a59943</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKd_QLzIH-jMaU7W5XKM6oQOQSZ6V7LmBKNrI2lU_Pfr3C68Oh_wvC88jF2DmAAIfbtelYvlJBc5TiRqUWh1wkagETIB-Ho67GImM0SpztlF378LIRAEjNjLnK--tsm3wZotX1EyLUXf8NLE9PYTYptV_oP4U9iExF2IvApNaEPyoeO-O7CJYjTDUXbfPoaupS71l-zMmW1PV8c5Zs935XqxzKrH-4fFvMoaQJ0ycla5QlNjjd1YCXL4Fg4sGMSZlAhTEEYZkKrRmCttC-conwoiMEprlGOWH3KbGPo-kqs_o29N_K1B1Hs19Z-aeq-mPqoZoJsD5InoH1CofCiRO7IiYXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multimodal Metameric Earthworm-Like Robot for Locomotion in Multiterrain Environments</title><source>IEEE Electronic Library (IEL)</source><creator>He, Zihan ; Zhang, Qiwei ; Bi, Zhihai ; Fang, Hongbin</creator><creatorcontrib>He, Zihan ; Zhang, Qiwei ; Bi, Zhihai ; Fang, Hongbin</creatorcontrib><description>In this research, we introduce a novel multimodal locomotion robot by integrating foldable wheeled structures with antagonistically deformable worm-like structures. This design reconciles the inherent challenges faced by conventional worm-like and wheeled robots. Our robot showcases two locomotion modes and five distinct motion types: worm-like rectilinear, sidewinding, circular crawling, rectilinear rolling, and spot turning. This versatility enables the robot to adapt to diverse environments and tasks. We have developed kinematic models for both crawling and rolling locomotion modes. By correlating these models with gait and control signals, we can qualitatively predict the characteristics of robot trajectories and locomotion performance indexes, underscoring the key role of kinematic models in locomotion. Furthermore, we experimentally demonstrate the robot's multiterrain adaptability. The robot adeptly navigates horizontal, curved, and vertical industrial pipes, along with narrow sewers, utilizing the worm-like crawling mode. Moreover, it efficiently traverses open terrains, including carpeted floors, mossy ground, gravel paths, grassland, steps, asphalt pavement, and uphill, employing the rolling mode. Impressively, the robot swiftly readjusts its posture after descending steps and promptly reorients itself through spot turns, showcasing its agility. This work highlights the advantages of combining multiple motion modalities and integrating structural and control signals, providing valuable insights for the advancement of future bionic and multimodal robots.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3490795</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinspired robot ; Kinematics ; locomotion gait ; Mechatronics ; Mobile robots ; Motion segmentation ; multimodal locomotion ; Robot kinematics ; Robots ; Service robots ; Servomotors ; soft robot ; Switches ; Wheels</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-11, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4376-007X ; 0000-0001-6691-0531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10752425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10752425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Zihan</creatorcontrib><creatorcontrib>Zhang, Qiwei</creatorcontrib><creatorcontrib>Bi, Zhihai</creatorcontrib><creatorcontrib>Fang, Hongbin</creatorcontrib><title>A Multimodal Metameric Earthworm-Like Robot for Locomotion in Multiterrain Environments</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In this research, we introduce a novel multimodal locomotion robot by integrating foldable wheeled structures with antagonistically deformable worm-like structures. This design reconciles the inherent challenges faced by conventional worm-like and wheeled robots. Our robot showcases two locomotion modes and five distinct motion types: worm-like rectilinear, sidewinding, circular crawling, rectilinear rolling, and spot turning. This versatility enables the robot to adapt to diverse environments and tasks. We have developed kinematic models for both crawling and rolling locomotion modes. By correlating these models with gait and control signals, we can qualitatively predict the characteristics of robot trajectories and locomotion performance indexes, underscoring the key role of kinematic models in locomotion. Furthermore, we experimentally demonstrate the robot's multiterrain adaptability. The robot adeptly navigates horizontal, curved, and vertical industrial pipes, along with narrow sewers, utilizing the worm-like crawling mode. Moreover, it efficiently traverses open terrains, including carpeted floors, mossy ground, gravel paths, grassland, steps, asphalt pavement, and uphill, employing the rolling mode. Impressively, the robot swiftly readjusts its posture after descending steps and promptly reorients itself through spot turns, showcasing its agility. This work highlights the advantages of combining multiple motion modalities and integrating structural and control signals, providing valuable insights for the advancement of future bionic and multimodal robots.</description><subject>Bioinspired robot</subject><subject>Kinematics</subject><subject>locomotion gait</subject><subject>Mechatronics</subject><subject>Mobile robots</subject><subject>Motion segmentation</subject><subject>multimodal locomotion</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Service robots</subject><subject>Servomotors</subject><subject>soft robot</subject><subject>Switches</subject><subject>Wheels</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKd_QLzIH-jMaU7W5XKM6oQOQSZ6V7LmBKNrI2lU_Pfr3C68Oh_wvC88jF2DmAAIfbtelYvlJBc5TiRqUWh1wkagETIB-Ho67GImM0SpztlF378LIRAEjNjLnK--tsm3wZotX1EyLUXf8NLE9PYTYptV_oP4U9iExF2IvApNaEPyoeO-O7CJYjTDUXbfPoaupS71l-zMmW1PV8c5Zs935XqxzKrH-4fFvMoaQJ0ycla5QlNjjd1YCXL4Fg4sGMSZlAhTEEYZkKrRmCttC-conwoiMEprlGOWH3KbGPo-kqs_o29N_K1B1Hs19Z-aeq-mPqoZoJsD5InoH1CofCiRO7IiYXk</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>He, Zihan</creator><creator>Zhang, Qiwei</creator><creator>Bi, Zhihai</creator><creator>Fang, Hongbin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4376-007X</orcidid><orcidid>https://orcid.org/0000-0001-6691-0531</orcidid></search><sort><creationdate>20241114</creationdate><title>A Multimodal Metameric Earthworm-Like Robot for Locomotion in Multiterrain Environments</title><author>He, Zihan ; Zhang, Qiwei ; Bi, Zhihai ; Fang, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-efd5f79ecdadbd3131497f1d1a4483341610a5a135c94259d7ffe260ee1a59943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinspired robot</topic><topic>Kinematics</topic><topic>locomotion gait</topic><topic>Mechatronics</topic><topic>Mobile robots</topic><topic>Motion segmentation</topic><topic>multimodal locomotion</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Service robots</topic><topic>Servomotors</topic><topic>soft robot</topic><topic>Switches</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zihan</creatorcontrib><creatorcontrib>Zhang, Qiwei</creatorcontrib><creatorcontrib>Bi, Zhihai</creatorcontrib><creatorcontrib>Fang, Hongbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Zihan</au><au>Zhang, Qiwei</au><au>Bi, Zhihai</au><au>Fang, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodal Metameric Earthworm-Like Robot for Locomotion in Multiterrain Environments</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-11-14</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In this research, we introduce a novel multimodal locomotion robot by integrating foldable wheeled structures with antagonistically deformable worm-like structures. This design reconciles the inherent challenges faced by conventional worm-like and wheeled robots. Our robot showcases two locomotion modes and five distinct motion types: worm-like rectilinear, sidewinding, circular crawling, rectilinear rolling, and spot turning. This versatility enables the robot to adapt to diverse environments and tasks. We have developed kinematic models for both crawling and rolling locomotion modes. By correlating these models with gait and control signals, we can qualitatively predict the characteristics of robot trajectories and locomotion performance indexes, underscoring the key role of kinematic models in locomotion. Furthermore, we experimentally demonstrate the robot's multiterrain adaptability. The robot adeptly navigates horizontal, curved, and vertical industrial pipes, along with narrow sewers, utilizing the worm-like crawling mode. Moreover, it efficiently traverses open terrains, including carpeted floors, mossy ground, gravel paths, grassland, steps, asphalt pavement, and uphill, employing the rolling mode. Impressively, the robot swiftly readjusts its posture after descending steps and promptly reorients itself through spot turns, showcasing its agility. This work highlights the advantages of combining multiple motion modalities and integrating structural and control signals, providing valuable insights for the advancement of future bionic and multimodal robots.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2024.3490795</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4376-007X</orcidid><orcidid>https://orcid.org/0000-0001-6691-0531</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-11, p.1-12
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_10752425
source IEEE Electronic Library (IEL)
subjects Bioinspired robot
Kinematics
locomotion gait
Mechatronics
Mobile robots
Motion segmentation
multimodal locomotion
Robot kinematics
Robots
Service robots
Servomotors
soft robot
Switches
Wheels
title A Multimodal Metameric Earthworm-Like Robot for Locomotion in Multiterrain Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodal%20Metameric%20Earthworm-Like%20Robot%20for%20Locomotion%20in%20Multiterrain%20Environments&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=He,%20Zihan&rft.date=2024-11-14&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3490795&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2024_3490795%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10752425&rfr_iscdi=true