Perceptible Lightweight Zero-Mean Normalized Cross-Correlation for Infrared Template Matching

Infrared template matching is an essential technology that enables reliable and accurate object detection, recognition, and tracking in complex environments. Perceptible Lightweight Zero-mean normalized cross-correlation (ZNCC) Template Matching (PLZ-TM) has been proposed as a tool for matching infr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.164777-164791
Hauptverfasser: Lee, Seungeon, Kim, Donyung, Park, Inho, Kim, Geonjong, Kim, Sungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164791
container_issue
container_start_page 164777
container_title IEEE access
container_volume 12
creator Lee, Seungeon
Kim, Donyung
Park, Inho
Kim, Geonjong
Kim, Sungho
description Infrared template matching is an essential technology that enables reliable and accurate object detection, recognition, and tracking in complex environments. Perceptible Lightweight Zero-mean normalized cross-correlation (ZNCC) Template Matching (PLZ-TM) has been proposed as a tool for matching infrared images obtained from cameras with different fields of view. Aligning such images is challenging because of the involved differences in thermal distributions, focus discrepancies, background elements, and distortions. The first stage of PLZ-TM involves extracting feature maps from the search and template images using a deep learning network. This deep learning network is designed with a Convolutional Neural Network (CNN) architecture that omits pooling layers, thereby minimizing information loss during extraction. The subsequent stage involves matching the feature maps. The matching method utilizes a lightweight ZNCC (ZNCC) module that employs average pooling for training. The deep learning network is trained to optimize the distribution of the output heatmap and the probability at the correct location of the template image. PLZ-TM delivers excellent performance achieving a processing time of only 3.3 ms in matching a 640\times 480 search image with a 192\times 144 template image. Moreover, it attains a matching accuracy of 96% on a dataset obtained from infrared cameras with different fields of view.
doi_str_mv 10.1109/ACCESS.2024.3492206
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10747364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10747364</ieee_id><doaj_id>oai_doaj_org_article_dccb51aaa7504e2ea2f549542548c7d0</doaj_id><sourcerecordid>3127777629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-7cb872c1e664749f889559722bb1d1d3f1e90deaa74818e5825b593966dc86a13</originalsourceid><addsrcrecordid>eNpNUdtKw0AQDaKgaL9AHwI-p-798ijBS6FewPoiyLLZTOqWNFs3KaJf79aIOA-zw9k5Z4Y5WXaK0RRjpC8uy_Lq6WlKEGFTyjQhSOxlRwQLXVBOxf6_-jCb9P0KpVAJ4vIoe32E6GAz-KqFfO6Xb8MH7HL-AjEUd2C7_D7EtW39F9R5GUPfF2WIEVo7-NDlTYj5rGuijel7AetNwiG_s4N7893yJDtobNvD5Pc9zp6vrxblbTF_uJmVl_PCEaWHQrpKSeIwCMEk041SmnMtCakqXOOaNhg0qsFayRRWwBXhFddUC1E7JSymx9ls1K2DXZlN9GsbP02w3vwAIS6NjYN3LZjauYpjm7Q4YkDAkoYzzRnhTDlZo6R1PmptYnjfQj-YVdjGLq1vKCYyhSA6ddGxy-1OEqH5m4qR2dliRlvMzhbza0tinY0sDwD_GJJJKhj9BuWAiLM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777629</pqid></control><display><type>article</type><title>Perceptible Lightweight Zero-Mean Normalized Cross-Correlation for Infrared Template Matching</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Lee, Seungeon ; Kim, Donyung ; Park, Inho ; Kim, Geonjong ; Kim, Sungho</creator><creatorcontrib>Lee, Seungeon ; Kim, Donyung ; Park, Inho ; Kim, Geonjong ; Kim, Sungho</creatorcontrib><description><![CDATA[Infrared template matching is an essential technology that enables reliable and accurate object detection, recognition, and tracking in complex environments. Perceptible Lightweight Zero-mean normalized cross-correlation (ZNCC) Template Matching (PLZ-TM) has been proposed as a tool for matching infrared images obtained from cameras with different fields of view. Aligning such images is challenging because of the involved differences in thermal distributions, focus discrepancies, background elements, and distortions. The first stage of PLZ-TM involves extracting feature maps from the search and template images using a deep learning network. This deep learning network is designed with a Convolutional Neural Network (CNN) architecture that omits pooling layers, thereby minimizing information loss during extraction. The subsequent stage involves matching the feature maps. The matching method utilizes a lightweight ZNCC (ZNCC) module that employs average pooling for training. The deep learning network is trained to optimize the distribution of the output heatmap and the probability at the correct location of the template image. PLZ-TM delivers excellent performance achieving a processing time of only 3.3 ms in matching a <inline-formula> <tex-math notation="LaTeX">640\times 480 </tex-math></inline-formula> search image with a <inline-formula> <tex-math notation="LaTeX">192\times 144 </tex-math></inline-formula> template image. Moreover, it attains a matching accuracy of 96% on a dataset obtained from infrared cameras with different fields of view.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3492206</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Brightness ; Cameras ; convolutional neural network ; Convolutional neural networks ; Cross correlation ; Deep learning ; Feature extraction ; Feature maps ; Image matching ; infrared ; Infrared cameras ; Infrared imagery ; Infrared imaging ; Infrared tracking ; Lightweight ; Machine learning ; Object recognition ; Object tracking ; real-time ; Real-time systems ; Template matching ; Training ; Weight reduction ; zero-mean normalized cross correlation</subject><ispartof>IEEE access, 2024, Vol.12, p.164777-164791</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-7cb872c1e664749f889559722bb1d1d3f1e90deaa74818e5825b593966dc86a13</cites><orcidid>0000-0002-5401-2459 ; 0009-0009-9693-2358 ; 0000-0003-0193-6700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10747364$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lee, Seungeon</creatorcontrib><creatorcontrib>Kim, Donyung</creatorcontrib><creatorcontrib>Park, Inho</creatorcontrib><creatorcontrib>Kim, Geonjong</creatorcontrib><creatorcontrib>Kim, Sungho</creatorcontrib><title>Perceptible Lightweight Zero-Mean Normalized Cross-Correlation for Infrared Template Matching</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Infrared template matching is an essential technology that enables reliable and accurate object detection, recognition, and tracking in complex environments. Perceptible Lightweight Zero-mean normalized cross-correlation (ZNCC) Template Matching (PLZ-TM) has been proposed as a tool for matching infrared images obtained from cameras with different fields of view. Aligning such images is challenging because of the involved differences in thermal distributions, focus discrepancies, background elements, and distortions. The first stage of PLZ-TM involves extracting feature maps from the search and template images using a deep learning network. This deep learning network is designed with a Convolutional Neural Network (CNN) architecture that omits pooling layers, thereby minimizing information loss during extraction. The subsequent stage involves matching the feature maps. The matching method utilizes a lightweight ZNCC (ZNCC) module that employs average pooling for training. The deep learning network is trained to optimize the distribution of the output heatmap and the probability at the correct location of the template image. PLZ-TM delivers excellent performance achieving a processing time of only 3.3 ms in matching a <inline-formula> <tex-math notation="LaTeX">640\times 480 </tex-math></inline-formula> search image with a <inline-formula> <tex-math notation="LaTeX">192\times 144 </tex-math></inline-formula> template image. Moreover, it attains a matching accuracy of 96% on a dataset obtained from infrared cameras with different fields of view.]]></description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Brightness</subject><subject>Cameras</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Cross correlation</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image matching</subject><subject>infrared</subject><subject>Infrared cameras</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared tracking</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Object tracking</subject><subject>real-time</subject><subject>Real-time systems</subject><subject>Template matching</subject><subject>Training</subject><subject>Weight reduction</subject><subject>zero-mean normalized cross correlation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKw0AQDaKgaL9AHwI-p-798ijBS6FewPoiyLLZTOqWNFs3KaJf79aIOA-zw9k5Z4Y5WXaK0RRjpC8uy_Lq6WlKEGFTyjQhSOxlRwQLXVBOxf6_-jCb9P0KpVAJ4vIoe32E6GAz-KqFfO6Xb8MH7HL-AjEUd2C7_D7EtW39F9R5GUPfF2WIEVo7-NDlTYj5rGuijel7AetNwiG_s4N7893yJDtobNvD5Pc9zp6vrxblbTF_uJmVl_PCEaWHQrpKSeIwCMEk041SmnMtCakqXOOaNhg0qsFayRRWwBXhFddUC1E7JSymx9ls1K2DXZlN9GsbP02w3vwAIS6NjYN3LZjauYpjm7Q4YkDAkoYzzRnhTDlZo6R1PmptYnjfQj-YVdjGLq1vKCYyhSA6ddGxy-1OEqH5m4qR2dliRlvMzhbza0tinY0sDwD_GJJJKhj9BuWAiLM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Seungeon</creator><creator>Kim, Donyung</creator><creator>Park, Inho</creator><creator>Kim, Geonjong</creator><creator>Kim, Sungho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5401-2459</orcidid><orcidid>https://orcid.org/0009-0009-9693-2358</orcidid><orcidid>https://orcid.org/0000-0003-0193-6700</orcidid></search><sort><creationdate>2024</creationdate><title>Perceptible Lightweight Zero-Mean Normalized Cross-Correlation for Infrared Template Matching</title><author>Lee, Seungeon ; Kim, Donyung ; Park, Inho ; Kim, Geonjong ; Kim, Sungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-7cb872c1e664749f889559722bb1d1d3f1e90deaa74818e5825b593966dc86a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Brightness</topic><topic>Cameras</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Cross correlation</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image matching</topic><topic>infrared</topic><topic>Infrared cameras</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared tracking</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Object tracking</topic><topic>real-time</topic><topic>Real-time systems</topic><topic>Template matching</topic><topic>Training</topic><topic>Weight reduction</topic><topic>zero-mean normalized cross correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seungeon</creatorcontrib><creatorcontrib>Kim, Donyung</creatorcontrib><creatorcontrib>Park, Inho</creatorcontrib><creatorcontrib>Kim, Geonjong</creatorcontrib><creatorcontrib>Kim, Sungho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seungeon</au><au>Kim, Donyung</au><au>Park, Inho</au><au>Kim, Geonjong</au><au>Kim, Sungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptible Lightweight Zero-Mean Normalized Cross-Correlation for Infrared Template Matching</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>164777</spage><epage>164791</epage><pages>164777-164791</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Infrared template matching is an essential technology that enables reliable and accurate object detection, recognition, and tracking in complex environments. Perceptible Lightweight Zero-mean normalized cross-correlation (ZNCC) Template Matching (PLZ-TM) has been proposed as a tool for matching infrared images obtained from cameras with different fields of view. Aligning such images is challenging because of the involved differences in thermal distributions, focus discrepancies, background elements, and distortions. The first stage of PLZ-TM involves extracting feature maps from the search and template images using a deep learning network. This deep learning network is designed with a Convolutional Neural Network (CNN) architecture that omits pooling layers, thereby minimizing information loss during extraction. The subsequent stage involves matching the feature maps. The matching method utilizes a lightweight ZNCC (ZNCC) module that employs average pooling for training. The deep learning network is trained to optimize the distribution of the output heatmap and the probability at the correct location of the template image. PLZ-TM delivers excellent performance achieving a processing time of only 3.3 ms in matching a <inline-formula> <tex-math notation="LaTeX">640\times 480 </tex-math></inline-formula> search image with a <inline-formula> <tex-math notation="LaTeX">192\times 144 </tex-math></inline-formula> template image. Moreover, it attains a matching accuracy of 96% on a dataset obtained from infrared cameras with different fields of view.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3492206</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5401-2459</orcidid><orcidid>https://orcid.org/0009-0009-9693-2358</orcidid><orcidid>https://orcid.org/0000-0003-0193-6700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.164777-164791
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10747364
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Accuracy
Artificial neural networks
Brightness
Cameras
convolutional neural network
Convolutional neural networks
Cross correlation
Deep learning
Feature extraction
Feature maps
Image matching
infrared
Infrared cameras
Infrared imagery
Infrared imaging
Infrared tracking
Lightweight
Machine learning
Object recognition
Object tracking
real-time
Real-time systems
Template matching
Training
Weight reduction
zero-mean normalized cross correlation
title Perceptible Lightweight Zero-Mean Normalized Cross-Correlation for Infrared Template Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptible%20Lightweight%20Zero-Mean%20Normalized%20Cross-Correlation%20for%20Infrared%20Template%20Matching&rft.jtitle=IEEE%20access&rft.au=Lee,%20Seungeon&rft.date=2024&rft.volume=12&rft.spage=164777&rft.epage=164791&rft.pages=164777-164791&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3492206&rft_dat=%3Cproquest_ieee_%3E3127777629%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127777629&rft_id=info:pmid/&rft_ieee_id=10747364&rft_doaj_id=oai_doaj_org_article_dccb51aaa7504e2ea2f549542548c7d0&rfr_iscdi=true