Ultra-high-capacity band and space division multiplexing backbone EONs: multi-core versus multi-fiber

Both multi-band and space division multiplexing (SDM) independently represent cost-effective approaches for next-generation optical backbone networks, particularly as data exchange between core data centers reaches the petabit-per-second scale. This paper focuses on different strategies for implemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2024-12, Vol.16 (12), p.H66-H78
Hauptverfasser: Arpanaei, Farhad, Zefreh, Mahdi Ranjbar, Natalino, Carlos, Lechowicz, Piotr, Yan, Shuangyi, Rivas-Moscoso, Jose M., Gonzalez de Dios, Oscar, Fernandez-Palacios, Juan Pedro, Rabbani, Hami, Brandt-Pearce, Maite, Sanchez-Macian, Alfonso, Hernandez, Jose Alberto, Larrabeiti, David, Monti, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H78
container_issue 12
container_start_page H66
container_title Journal of optical communications and networking
container_volume 16
creator Arpanaei, Farhad
Zefreh, Mahdi Ranjbar
Natalino, Carlos
Lechowicz, Piotr
Yan, Shuangyi
Rivas-Moscoso, Jose M.
Gonzalez de Dios, Oscar
Fernandez-Palacios, Juan Pedro
Rabbani, Hami
Brandt-Pearce, Maite
Sanchez-Macian, Alfonso
Hernandez, Jose Alberto
Larrabeiti, David
Monti, Paolo
description Both multi-band and space division multiplexing (SDM) independently represent cost-effective approaches for next-generation optical backbone networks, particularly as data exchange between core data centers reaches the petabit-per-second scale. This paper focuses on different strategies for implementing band and SDM elastic optical network (BSDM EON) technology and analyzes the total network capacity of three sizes of backbone metro-core networks: ultra-long-, long-, and medium-distance networks related to the United States, Japan, and Spain, respectively. Two BSDM strategies are considered, namely, multi-core fibers (MCFs) and BSDM based on standard single-mode fiber (SSMF) bundles of multi-fiber pairs (BuMFPs). For MCF-based BSDM, we evaluated the performance of four manufactured trench-assisted weakly coupled (TAWC) MCFs with 4, 7, 13, and 19 cores. Simulation results reveal that, in the regime of ultra-low (UL) loss and inter-core crosstalk (ICXT), MCF-based throughput can be up to 14% higher than SSMF BuMFP-based BSDM when the core pitch exceeds 43 µm and the loss coefficient is lower than that of standard single-mode fibers. However, increasing the number of cores with (non-)standard cladding diameters, UL loss, and ICXT coefficient is not beneficial. As core counts increase up to 13 for non-standard cladding diameters ( {\lt}230\;{\unicode{x00B5}{\rm m}} ), the core pitch and loss coefficient also increase, leading to degraded performance of MCF-based BSDM compared to SSMF BuMFP-based BSDM. The results indicate that, in scenarios with 19 MFPs, SSFM BuMFP-based BSDM outperforms 19-core MCF-based scenarios, increasing the throughput by 55% to 73%, from medium-backbone networks to ultra-long ones.
doi_str_mv 10.1364/JOCN.533086
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10746252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10746252</ieee_id><sourcerecordid>10_1364_JOCN_533086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-2b857422bdbce59aec5369621b05c46bc685304fd6243934ff872efa5f479c913</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYievHrYuyn2e7feDAE_QuAi503bnUJ12SXtQuTfC1liPExm8r5P5vAgdE_JiHIlnj4W4_lIck4KdYEGVAuOieL68u9m5BrdpPRFiMoplQMEy7qLBq_Dao2d2RoXukNmTVNlp0nHALIq7EMKbZNtdnUXtjX8hGZ1hNy3bRvIJot5eu477NoI2R5i2qVz4oOFeIuuvKkT3J33EC2nk8_xG54tXt_HLzPsqGAdZraQuWDMVtaB1Aac5EorRi2RTijrVCE5Eb5STHDNhfdFzsAb6UWunaZ8iB77vy62KUXw5TaGjYmHkpLyZKg8GSp7Q0f6oacDAPwjc6GYZPwX-xdi5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultra-high-capacity band and space division multiplexing backbone EONs: multi-core versus multi-fiber</title><source>IEEE Electronic Library (IEL)</source><creator>Arpanaei, Farhad ; Zefreh, Mahdi Ranjbar ; Natalino, Carlos ; Lechowicz, Piotr ; Yan, Shuangyi ; Rivas-Moscoso, Jose M. ; Gonzalez de Dios, Oscar ; Fernandez-Palacios, Juan Pedro ; Rabbani, Hami ; Brandt-Pearce, Maite ; Sanchez-Macian, Alfonso ; Hernandez, Jose Alberto ; Larrabeiti, David ; Monti, Paolo</creator><creatorcontrib>Arpanaei, Farhad ; Zefreh, Mahdi Ranjbar ; Natalino, Carlos ; Lechowicz, Piotr ; Yan, Shuangyi ; Rivas-Moscoso, Jose M. ; Gonzalez de Dios, Oscar ; Fernandez-Palacios, Juan Pedro ; Rabbani, Hami ; Brandt-Pearce, Maite ; Sanchez-Macian, Alfonso ; Hernandez, Jose Alberto ; Larrabeiti, David ; Monti, Paolo</creatorcontrib><description>Both multi-band and space division multiplexing (SDM) independently represent cost-effective approaches for next-generation optical backbone networks, particularly as data exchange between core data centers reaches the petabit-per-second scale. This paper focuses on different strategies for implementing band and SDM elastic optical network (BSDM EON) technology and analyzes the total network capacity of three sizes of backbone metro-core networks: ultra-long-, long-, and medium-distance networks related to the United States, Japan, and Spain, respectively. Two BSDM strategies are considered, namely, multi-core fibers (MCFs) and BSDM based on standard single-mode fiber (SSMF) bundles of multi-fiber pairs (BuMFPs). For MCF-based BSDM, we evaluated the performance of four manufactured trench-assisted weakly coupled (TAWC) MCFs with 4, 7, 13, and 19 cores. Simulation results reveal that, in the regime of ultra-low (UL) loss and inter-core crosstalk (ICXT), MCF-based throughput can be up to 14% higher than SSMF BuMFP-based BSDM when the core pitch exceeds 43 µm and the loss coefficient is lower than that of standard single-mode fibers. However, increasing the number of cores with (non-)standard cladding diameters, UL loss, and ICXT coefficient is not beneficial. As core counts increase up to 13 for non-standard cladding diameters ( {\lt}230\;{\unicode{x00B5}{\rm m}} ), the core pitch and loss coefficient also increase, leading to degraded performance of MCF-based BSDM compared to SSMF BuMFP-based BSDM. The results indicate that, in scenarios with 19 MFPs, SSFM BuMFP-based BSDM outperforms 19-core MCF-based scenarios, increasing the throughput by 55% to 73%, from medium-backbone networks to ultra-long ones.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.533086</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Optica Publishing Group</publisher><subject>Claddings ; Integrated optics ; L-band ; Optical crosstalk ; Optical losses ; Optical network units ; Optical receivers ; Optical switches ; Space division multiplexing</subject><ispartof>Journal of optical communications and networking, 2024-12, Vol.16 (12), p.H66-H78</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c142t-2b857422bdbce59aec5369621b05c46bc685304fd6243934ff872efa5f479c913</cites><orcidid>0000-0001-7501-5547 ; 0000-0002-5636-9910 ; 0000-0003-4983-0243 ; 0000-0002-2566-8280 ; 0000-0002-1898-0807 ; 0000-0003-1061-0614 ; 0000-0003-2555-5187 ; 0000-0002-2220-0594 ; 0000-0002-5021-2840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10746252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10746252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arpanaei, Farhad</creatorcontrib><creatorcontrib>Zefreh, Mahdi Ranjbar</creatorcontrib><creatorcontrib>Natalino, Carlos</creatorcontrib><creatorcontrib>Lechowicz, Piotr</creatorcontrib><creatorcontrib>Yan, Shuangyi</creatorcontrib><creatorcontrib>Rivas-Moscoso, Jose M.</creatorcontrib><creatorcontrib>Gonzalez de Dios, Oscar</creatorcontrib><creatorcontrib>Fernandez-Palacios, Juan Pedro</creatorcontrib><creatorcontrib>Rabbani, Hami</creatorcontrib><creatorcontrib>Brandt-Pearce, Maite</creatorcontrib><creatorcontrib>Sanchez-Macian, Alfonso</creatorcontrib><creatorcontrib>Hernandez, Jose Alberto</creatorcontrib><creatorcontrib>Larrabeiti, David</creatorcontrib><creatorcontrib>Monti, Paolo</creatorcontrib><title>Ultra-high-capacity band and space division multiplexing backbone EONs: multi-core versus multi-fiber</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Both multi-band and space division multiplexing (SDM) independently represent cost-effective approaches for next-generation optical backbone networks, particularly as data exchange between core data centers reaches the petabit-per-second scale. This paper focuses on different strategies for implementing band and SDM elastic optical network (BSDM EON) technology and analyzes the total network capacity of three sizes of backbone metro-core networks: ultra-long-, long-, and medium-distance networks related to the United States, Japan, and Spain, respectively. Two BSDM strategies are considered, namely, multi-core fibers (MCFs) and BSDM based on standard single-mode fiber (SSMF) bundles of multi-fiber pairs (BuMFPs). For MCF-based BSDM, we evaluated the performance of four manufactured trench-assisted weakly coupled (TAWC) MCFs with 4, 7, 13, and 19 cores. Simulation results reveal that, in the regime of ultra-low (UL) loss and inter-core crosstalk (ICXT), MCF-based throughput can be up to 14% higher than SSMF BuMFP-based BSDM when the core pitch exceeds 43 µm and the loss coefficient is lower than that of standard single-mode fibers. However, increasing the number of cores with (non-)standard cladding diameters, UL loss, and ICXT coefficient is not beneficial. As core counts increase up to 13 for non-standard cladding diameters ( {\lt}230\;{\unicode{x00B5}{\rm m}} ), the core pitch and loss coefficient also increase, leading to degraded performance of MCF-based BSDM compared to SSMF BuMFP-based BSDM. The results indicate that, in scenarios with 19 MFPs, SSFM BuMFP-based BSDM outperforms 19-core MCF-based scenarios, increasing the throughput by 55% to 73%, from medium-backbone networks to ultra-long ones.</description><subject>Claddings</subject><subject>Integrated optics</subject><subject>L-band</subject><subject>Optical crosstalk</subject><subject>Optical losses</subject><subject>Optical network units</subject><subject>Optical receivers</subject><subject>Optical switches</subject><subject>Space division multiplexing</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYievHrYuyn2e7feDAE_QuAi503bnUJ12SXtQuTfC1liPExm8r5P5vAgdE_JiHIlnj4W4_lIck4KdYEGVAuOieL68u9m5BrdpPRFiMoplQMEy7qLBq_Dao2d2RoXukNmTVNlp0nHALIq7EMKbZNtdnUXtjX8hGZ1hNy3bRvIJot5eu477NoI2R5i2qVz4oOFeIuuvKkT3J33EC2nk8_xG54tXt_HLzPsqGAdZraQuWDMVtaB1Aac5EorRi2RTijrVCE5Eb5STHDNhfdFzsAb6UWunaZ8iB77vy62KUXw5TaGjYmHkpLyZKg8GSp7Q0f6oacDAPwjc6GYZPwX-xdi5w</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Arpanaei, Farhad</creator><creator>Zefreh, Mahdi Ranjbar</creator><creator>Natalino, Carlos</creator><creator>Lechowicz, Piotr</creator><creator>Yan, Shuangyi</creator><creator>Rivas-Moscoso, Jose M.</creator><creator>Gonzalez de Dios, Oscar</creator><creator>Fernandez-Palacios, Juan Pedro</creator><creator>Rabbani, Hami</creator><creator>Brandt-Pearce, Maite</creator><creator>Sanchez-Macian, Alfonso</creator><creator>Hernandez, Jose Alberto</creator><creator>Larrabeiti, David</creator><creator>Monti, Paolo</creator><general>Optica Publishing Group</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7501-5547</orcidid><orcidid>https://orcid.org/0000-0002-5636-9910</orcidid><orcidid>https://orcid.org/0000-0003-4983-0243</orcidid><orcidid>https://orcid.org/0000-0002-2566-8280</orcidid><orcidid>https://orcid.org/0000-0002-1898-0807</orcidid><orcidid>https://orcid.org/0000-0003-1061-0614</orcidid><orcidid>https://orcid.org/0000-0003-2555-5187</orcidid><orcidid>https://orcid.org/0000-0002-2220-0594</orcidid><orcidid>https://orcid.org/0000-0002-5021-2840</orcidid></search><sort><creationdate>202412</creationdate><title>Ultra-high-capacity band and space division multiplexing backbone EONs: multi-core versus multi-fiber</title><author>Arpanaei, Farhad ; Zefreh, Mahdi Ranjbar ; Natalino, Carlos ; Lechowicz, Piotr ; Yan, Shuangyi ; Rivas-Moscoso, Jose M. ; Gonzalez de Dios, Oscar ; Fernandez-Palacios, Juan Pedro ; Rabbani, Hami ; Brandt-Pearce, Maite ; Sanchez-Macian, Alfonso ; Hernandez, Jose Alberto ; Larrabeiti, David ; Monti, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-2b857422bdbce59aec5369621b05c46bc685304fd6243934ff872efa5f479c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Claddings</topic><topic>Integrated optics</topic><topic>L-band</topic><topic>Optical crosstalk</topic><topic>Optical losses</topic><topic>Optical network units</topic><topic>Optical receivers</topic><topic>Optical switches</topic><topic>Space division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arpanaei, Farhad</creatorcontrib><creatorcontrib>Zefreh, Mahdi Ranjbar</creatorcontrib><creatorcontrib>Natalino, Carlos</creatorcontrib><creatorcontrib>Lechowicz, Piotr</creatorcontrib><creatorcontrib>Yan, Shuangyi</creatorcontrib><creatorcontrib>Rivas-Moscoso, Jose M.</creatorcontrib><creatorcontrib>Gonzalez de Dios, Oscar</creatorcontrib><creatorcontrib>Fernandez-Palacios, Juan Pedro</creatorcontrib><creatorcontrib>Rabbani, Hami</creatorcontrib><creatorcontrib>Brandt-Pearce, Maite</creatorcontrib><creatorcontrib>Sanchez-Macian, Alfonso</creatorcontrib><creatorcontrib>Hernandez, Jose Alberto</creatorcontrib><creatorcontrib>Larrabeiti, David</creatorcontrib><creatorcontrib>Monti, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arpanaei, Farhad</au><au>Zefreh, Mahdi Ranjbar</au><au>Natalino, Carlos</au><au>Lechowicz, Piotr</au><au>Yan, Shuangyi</au><au>Rivas-Moscoso, Jose M.</au><au>Gonzalez de Dios, Oscar</au><au>Fernandez-Palacios, Juan Pedro</au><au>Rabbani, Hami</au><au>Brandt-Pearce, Maite</au><au>Sanchez-Macian, Alfonso</au><au>Hernandez, Jose Alberto</au><au>Larrabeiti, David</au><au>Monti, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-high-capacity band and space division multiplexing backbone EONs: multi-core versus multi-fiber</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2024-12</date><risdate>2024</risdate><volume>16</volume><issue>12</issue><spage>H66</spage><epage>H78</epage><pages>H66-H78</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Both multi-band and space division multiplexing (SDM) independently represent cost-effective approaches for next-generation optical backbone networks, particularly as data exchange between core data centers reaches the petabit-per-second scale. This paper focuses on different strategies for implementing band and SDM elastic optical network (BSDM EON) technology and analyzes the total network capacity of three sizes of backbone metro-core networks: ultra-long-, long-, and medium-distance networks related to the United States, Japan, and Spain, respectively. Two BSDM strategies are considered, namely, multi-core fibers (MCFs) and BSDM based on standard single-mode fiber (SSMF) bundles of multi-fiber pairs (BuMFPs). For MCF-based BSDM, we evaluated the performance of four manufactured trench-assisted weakly coupled (TAWC) MCFs with 4, 7, 13, and 19 cores. Simulation results reveal that, in the regime of ultra-low (UL) loss and inter-core crosstalk (ICXT), MCF-based throughput can be up to 14% higher than SSMF BuMFP-based BSDM when the core pitch exceeds 43 µm and the loss coefficient is lower than that of standard single-mode fibers. However, increasing the number of cores with (non-)standard cladding diameters, UL loss, and ICXT coefficient is not beneficial. As core counts increase up to 13 for non-standard cladding diameters ( {\lt}230\;{\unicode{x00B5}{\rm m}} ), the core pitch and loss coefficient also increase, leading to degraded performance of MCF-based BSDM compared to SSMF BuMFP-based BSDM. The results indicate that, in scenarios with 19 MFPs, SSFM BuMFP-based BSDM outperforms 19-core MCF-based scenarios, increasing the throughput by 55% to 73%, from medium-backbone networks to ultra-long ones.</abstract><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.533086</doi><orcidid>https://orcid.org/0000-0001-7501-5547</orcidid><orcidid>https://orcid.org/0000-0002-5636-9910</orcidid><orcidid>https://orcid.org/0000-0003-4983-0243</orcidid><orcidid>https://orcid.org/0000-0002-2566-8280</orcidid><orcidid>https://orcid.org/0000-0002-1898-0807</orcidid><orcidid>https://orcid.org/0000-0003-1061-0614</orcidid><orcidid>https://orcid.org/0000-0003-2555-5187</orcidid><orcidid>https://orcid.org/0000-0002-2220-0594</orcidid><orcidid>https://orcid.org/0000-0002-5021-2840</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2024-12, Vol.16 (12), p.H66-H78
issn 1943-0620
1943-0639
language eng
recordid cdi_ieee_primary_10746252
source IEEE Electronic Library (IEL)
subjects Claddings
Integrated optics
L-band
Optical crosstalk
Optical losses
Optical network units
Optical receivers
Optical switches
Space division multiplexing
title Ultra-high-capacity band and space division multiplexing backbone EONs: multi-core versus multi-fiber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-high-capacity%20band%20and%20space%20division%20multiplexing%20backbone%20EONs:%20multi-core%20versus%20multi-fiber&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Arpanaei,%20Farhad&rft.date=2024-12&rft.volume=16&rft.issue=12&rft.spage=H66&rft.epage=H78&rft.pages=H66-H78&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.533086&rft_dat=%3Ccrossref_RIE%3E10_1364_JOCN_533086%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10746252&rfr_iscdi=true