Domain-Adaptive Online Active Learning for Real-Time Intelligent Video Analytics on Edge Devices
Deep learning (DL) for intelligent video analytics is increasingly pervasive in various application domains, ranging from Healthcare to Industry 5.0. A significant trend involves deploying DL models on edge devices with limited resources. Techniques, such as pruning, quantization, and early exit, ha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2024-11, Vol.43 (11), p.4105-4116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4116 |
---|---|
container_issue | 11 |
container_start_page | 4105 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 43 |
creator | Boldo, Michele De Marchi, Mirco Martini, Enrico Aldegheri, Stefano Bombieri, Nicola |
description | Deep learning (DL) for intelligent video analytics is increasingly pervasive in various application domains, ranging from Healthcare to Industry 5.0. A significant trend involves deploying DL models on edge devices with limited resources. Techniques, such as pruning, quantization, and early exit, have demonstrated the feasibility of real-time inference at the edge by compressing and optimizing deep neural networks (DNNs). However, adapting pretrained models to new and dynamic scenarios remains a significant challenge. While solutions like domain adaptation, active learning (AL), and teacher-student knowledge distillation (KD) contribute to addressing this challenge, they often rely on cloud or well-equipped computing platforms for fine tuning. In this study, we propose a framework for domain-adaptive online AL of DNN models tailored for intelligent video analytics on resource-constrained devices. Our framework employs a KD approach where both teacher and student models are deployed on the edge device. To determine when to retrain the student DNN model without ground-truth or cloud-based teacher inference, our model utilizes singular value decomposition of input data. It implements the identification of key data frames and efficient retraining of the student through the teacher execution at the edge, aiming to prevent model overfitting. We evaluate the framework through two case studies: 1) human pose estimation and 2) car object detection, both implemented on an NVIDIA Jetson NX device. |
doi_str_mv | 10.1109/TCAD.2024.3453188 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10745828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745828</ieee_id><sourcerecordid>10_1109_TCAD_2024_3453188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-6def9abe1cdeb2dd1fee5a887c36d6bd49e469bb77152cf6645a8cea9eeb0a963</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWKsPILjIC6Tmz2RyWQ5trYVCQarbMZP8UyLTTJkZCn17W9uFq8PhXBYfIc_AJwDcvm6mxWwiuJCTTOYZGHNDRmAzzSTkcEtGXGjDONf8njz0_Q_nIHNhR-R71u5cTKwIbj_EA9J1amJCWvg_t0LXpZi2tG47-oGuYZu4Q7pMAzZN3GIa6FcM2NIiueY4RN_TNtF52CKd4SF67B_JXe2aHp-uOiafb_PN9J2t1ovltFgxDxYGpgLW1lUIPmAlQoAaMXfGaJ-poKogLUplq0pryIWvlZKn1KOziBV3VmVjApdf37V932Fd7ru4c92xBF6eEZVnROUZUXlFdNq8XDYREf_1tcyNMNkvgeJkeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Domain-Adaptive Online Active Learning for Real-Time Intelligent Video Analytics on Edge Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Boldo, Michele ; De Marchi, Mirco ; Martini, Enrico ; Aldegheri, Stefano ; Bombieri, Nicola</creator><creatorcontrib>Boldo, Michele ; De Marchi, Mirco ; Martini, Enrico ; Aldegheri, Stefano ; Bombieri, Nicola</creatorcontrib><description>Deep learning (DL) for intelligent video analytics is increasingly pervasive in various application domains, ranging from Healthcare to Industry 5.0. A significant trend involves deploying DL models on edge devices with limited resources. Techniques, such as pruning, quantization, and early exit, have demonstrated the feasibility of real-time inference at the edge by compressing and optimizing deep neural networks (DNNs). However, adapting pretrained models to new and dynamic scenarios remains a significant challenge. While solutions like domain adaptation, active learning (AL), and teacher-student knowledge distillation (KD) contribute to addressing this challenge, they often rely on cloud or well-equipped computing platforms for fine tuning. In this study, we propose a framework for domain-adaptive online AL of DNN models tailored for intelligent video analytics on resource-constrained devices. Our framework employs a KD approach where both teacher and student models are deployed on the edge device. To determine when to retrain the student DNN model without ground-truth or cloud-based teacher inference, our model utilizes singular value decomposition of input data. It implements the identification of key data frames and efficient retraining of the student through the teacher execution at the edge, aiming to prevent model overfitting. We evaluate the framework through two case studies: 1) human pose estimation and 2) car object detection, both implemented on an NVIDIA Jetson NX device.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2024.3453188</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active learning (AL) ; Adaptation models ; Artificial neural networks ; Computational modeling ; Data models ; edge AI ; edge training ; human pose estimation (HPE) ; Integrated circuit modeling ; online distillation ; Pose estimation ; Real-time systems ; real-time training ; Streaming media ; Training ; Visual analytics</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2024-11, Vol.43 (11), p.4105-4116</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-6def9abe1cdeb2dd1fee5a887c36d6bd49e469bb77152cf6645a8cea9eeb0a963</cites><orcidid>0000-0002-4177-6599 ; 0000-0002-3193-6798 ; 0000-0003-2731-2816 ; 0000-0001-6914-289X ; 0000-0003-3256-5885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745828$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids></links><search><creatorcontrib>Boldo, Michele</creatorcontrib><creatorcontrib>De Marchi, Mirco</creatorcontrib><creatorcontrib>Martini, Enrico</creatorcontrib><creatorcontrib>Aldegheri, Stefano</creatorcontrib><creatorcontrib>Bombieri, Nicola</creatorcontrib><title>Domain-Adaptive Online Active Learning for Real-Time Intelligent Video Analytics on Edge Devices</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Deep learning (DL) for intelligent video analytics is increasingly pervasive in various application domains, ranging from Healthcare to Industry 5.0. A significant trend involves deploying DL models on edge devices with limited resources. Techniques, such as pruning, quantization, and early exit, have demonstrated the feasibility of real-time inference at the edge by compressing and optimizing deep neural networks (DNNs). However, adapting pretrained models to new and dynamic scenarios remains a significant challenge. While solutions like domain adaptation, active learning (AL), and teacher-student knowledge distillation (KD) contribute to addressing this challenge, they often rely on cloud or well-equipped computing platforms for fine tuning. In this study, we propose a framework for domain-adaptive online AL of DNN models tailored for intelligent video analytics on resource-constrained devices. Our framework employs a KD approach where both teacher and student models are deployed on the edge device. To determine when to retrain the student DNN model without ground-truth or cloud-based teacher inference, our model utilizes singular value decomposition of input data. It implements the identification of key data frames and efficient retraining of the student through the teacher execution at the edge, aiming to prevent model overfitting. We evaluate the framework through two case studies: 1) human pose estimation and 2) car object detection, both implemented on an NVIDIA Jetson NX device.</description><subject>Active learning (AL)</subject><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>edge AI</subject><subject>edge training</subject><subject>human pose estimation (HPE)</subject><subject>Integrated circuit modeling</subject><subject>online distillation</subject><subject>Pose estimation</subject><subject>Real-time systems</subject><subject>real-time training</subject><subject>Streaming media</subject><subject>Training</subject><subject>Visual analytics</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEYhYMoWKsPILjIC6Tmz2RyWQ5trYVCQarbMZP8UyLTTJkZCn17W9uFq8PhXBYfIc_AJwDcvm6mxWwiuJCTTOYZGHNDRmAzzSTkcEtGXGjDONf8njz0_Q_nIHNhR-R71u5cTKwIbj_EA9J1amJCWvg_t0LXpZi2tG47-oGuYZu4Q7pMAzZN3GIa6FcM2NIiueY4RN_TNtF52CKd4SF67B_JXe2aHp-uOiafb_PN9J2t1ovltFgxDxYGpgLW1lUIPmAlQoAaMXfGaJ-poKogLUplq0pryIWvlZKn1KOziBV3VmVjApdf37V932Fd7ru4c92xBF6eEZVnROUZUXlFdNq8XDYREf_1tcyNMNkvgeJkeg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Boldo, Michele</creator><creator>De Marchi, Mirco</creator><creator>Martini, Enrico</creator><creator>Aldegheri, Stefano</creator><creator>Bombieri, Nicola</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4177-6599</orcidid><orcidid>https://orcid.org/0000-0002-3193-6798</orcidid><orcidid>https://orcid.org/0000-0003-2731-2816</orcidid><orcidid>https://orcid.org/0000-0001-6914-289X</orcidid><orcidid>https://orcid.org/0000-0003-3256-5885</orcidid></search><sort><creationdate>202411</creationdate><title>Domain-Adaptive Online Active Learning for Real-Time Intelligent Video Analytics on Edge Devices</title><author>Boldo, Michele ; De Marchi, Mirco ; Martini, Enrico ; Aldegheri, Stefano ; Bombieri, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-6def9abe1cdeb2dd1fee5a887c36d6bd49e469bb77152cf6645a8cea9eeb0a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active learning (AL)</topic><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>edge AI</topic><topic>edge training</topic><topic>human pose estimation (HPE)</topic><topic>Integrated circuit modeling</topic><topic>online distillation</topic><topic>Pose estimation</topic><topic>Real-time systems</topic><topic>real-time training</topic><topic>Streaming media</topic><topic>Training</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boldo, Michele</creatorcontrib><creatorcontrib>De Marchi, Mirco</creatorcontrib><creatorcontrib>Martini, Enrico</creatorcontrib><creatorcontrib>Aldegheri, Stefano</creatorcontrib><creatorcontrib>Bombieri, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boldo, Michele</au><au>De Marchi, Mirco</au><au>Martini, Enrico</au><au>Aldegheri, Stefano</au><au>Bombieri, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain-Adaptive Online Active Learning for Real-Time Intelligent Video Analytics on Edge Devices</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2024-11</date><risdate>2024</risdate><volume>43</volume><issue>11</issue><spage>4105</spage><epage>4116</epage><pages>4105-4116</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Deep learning (DL) for intelligent video analytics is increasingly pervasive in various application domains, ranging from Healthcare to Industry 5.0. A significant trend involves deploying DL models on edge devices with limited resources. Techniques, such as pruning, quantization, and early exit, have demonstrated the feasibility of real-time inference at the edge by compressing and optimizing deep neural networks (DNNs). However, adapting pretrained models to new and dynamic scenarios remains a significant challenge. While solutions like domain adaptation, active learning (AL), and teacher-student knowledge distillation (KD) contribute to addressing this challenge, they often rely on cloud or well-equipped computing platforms for fine tuning. In this study, we propose a framework for domain-adaptive online AL of DNN models tailored for intelligent video analytics on resource-constrained devices. Our framework employs a KD approach where both teacher and student models are deployed on the edge device. To determine when to retrain the student DNN model without ground-truth or cloud-based teacher inference, our model utilizes singular value decomposition of input data. It implements the identification of key data frames and efficient retraining of the student through the teacher execution at the edge, aiming to prevent model overfitting. We evaluate the framework through two case studies: 1) human pose estimation and 2) car object detection, both implemented on an NVIDIA Jetson NX device.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2024.3453188</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4177-6599</orcidid><orcidid>https://orcid.org/0000-0002-3193-6798</orcidid><orcidid>https://orcid.org/0000-0003-2731-2816</orcidid><orcidid>https://orcid.org/0000-0001-6914-289X</orcidid><orcidid>https://orcid.org/0000-0003-3256-5885</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2024-11, Vol.43 (11), p.4105-4116 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_10745828 |
source | IEEE Electronic Library (IEL) |
subjects | Active learning (AL) Adaptation models Artificial neural networks Computational modeling Data models edge AI edge training human pose estimation (HPE) Integrated circuit modeling online distillation Pose estimation Real-time systems real-time training Streaming media Training Visual analytics |
title | Domain-Adaptive Online Active Learning for Real-Time Intelligent Video Analytics on Edge Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain-Adaptive%20Online%20Active%20Learning%20for%20Real-Time%20Intelligent%20Video%20Analytics%20on%20Edge%20Devices&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Boldo,%20Michele&rft.date=2024-11&rft.volume=43&rft.issue=11&rft.spage=4105&rft.epage=4116&rft.pages=4105-4116&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2024.3453188&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCAD_2024_3453188%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10745828&rfr_iscdi=true |